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PREFACE

The purpose of this book is primarily to review and collect under one cover
summaries of contributions to the topic of Ocean Acoustic Tomography by Rus-
sian rescarchers. It was a joint effort by the Naval Research Laboratory (NRL)
of the United States and the Institute of Applied Physics of the Russian Academy
of Seiences (IAP-RAS). The work was jointly supported by the Office of Naval
Research (ONR) of the United States and the Russian F oundauon for Basic Re-
search (RFBR). . '

This book is one of a series published by IAP RAS that deals with various
interrelated problems of synthesis and analysis of underwater acoustic signals.
These books include:  The Foundation of Acoustical Fields in Oceanic
Waveguides, 1991 (in Russian); The Foundation of Acoustical Fields in Oceanic
Waveguides C Reconstruction of .lnhomogeneities, 1994 (in Russian); The
Foundation of Acoustical Fields in Oceanic Waveguides, 1995 (in English); The
Foundation of Acoustical Fields in Oceanic Waveguides C Coherence Phenom-
ena, 1997 (in English); and The Foundation of Acoustical Fields in Oceanic
Waveguides C Reconstruction- of Inhomogeneities in Shallow Water, 1998 (in
English). ‘

While the United States has taken one direction in the development of to-
mographic methods for the study of the World Ocean, the Russians have taken
another. The goal here is not only to review Ocean Acoustic Tomography, but
also to slant the review with a Russian flavor. This review, however, would not
be complete without including selected contribution from the American literature
on this topic. An excellent book by the inventors and early developers of Ocean
Acoustic Tomography (Walter Munk, Peter Worcester, and Carl Wunsch) al-
ready exists that details the contributions of the United States to the subject. The
US literature will be cited less frequently than Russian works in this review be-
causc the American publications on topics of Ocean Acoustic Tomography arc
more accessible and better known to the American scientific community.

They also thank all the authors whose works have been include here in al-
tered and condensed form. The present authors, however, take full responsible
for any errors that may appear in their alteration of the original works. “To those



authors whose works have been used extensively with thejr permission we owe
special thanks. They include: D.I. Abrosimov, E.L. Borodina, L.M. Brek-
hovskikh, I.B. Burlakova, LN. Didenkulov, V.N. Fokin, A.G. Nechaev, V.V,
Goncharov, A.Yu. Kazarova, B.F. Kur'ianov. The authors and their respeclive
institutes are grateful to ONR for support of this review. V.M. Kurtepov, L.Ya.
Lubavin, Yu.V. Petukhov, L.P. Smirnov, A.A. Stromkov, Al Vedenev, and
V.Yu. Zaitsev. The present authors also regret not-mentioning other major con-
tributors they may have overlook in the above credits.
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TOMOGRAPHIC
METHODS



Chapter 1:

INTRODUCTION: CONCEPTS IN ACOUSTIC MODELING AND
TOMOGRAPHY

1.1 TOMOGRAPHY AS A PRACTICAL TOOL FOR SOLVING INVERSE
PROBLEMS

A process of sensing (or probing) the internal structure of objects by
propagating waves through them and analyzing the resulting field is a practical
example of solving an inverse problem. This process is described mathematically by
an integral equation:

[[¥@Rotir.0gtrvdrd =0 R.1), * a.1)

where r, R are position vectors, g(r,1) is a function of the characteristics of the object
under observation, ¢(R,r) corresponds to measured data, and y(R,/;,7) is the kernel
of the integral equation. The kernel is determined by the structure of the unperturbed
medium and by the measurement scheme. The integral in Eq. (1.1) is constructed
from functions that describe properties of the medium along wave propagation paths
crossing the inhomogeneity at different angles in a given section (or slice). Thus,
measured data on the right-hand side of Eq. (1.1) contain information about medium
characteristics. The acoustically observable integral properties, which are described
by the function @(R.?), can represent travel time or attenuation.

Although the inverse problem has different methods of solution, a procedure
introduced in 1917 by Radon [1] has come to be called "tomographic reconstruction”,
or "tomography.” Tomography, from the Greek word "tomos", means a layer (or
sllce) Thus, it implies a process of layer-by-layer reconstruction of the structure by
using various types of probing waves. Generally, tomography is based on a principle
that determines how to change the parameters of the kernel of the integral equation
and how to connect these changes to measured data and properties of the object. The -
result is a practical solution of the integral equation in terms of a series of measured
projections. Changes in the kernel of the integral equation determine the methods and
algorithms for the measurements of the tomographic projections, or vice versa.
Tomographic reconstruction is the restoration of differential characteristics of the
observed object by mutual processing of all projections. For some cases, the
procedure of reconstruction can be reduced to a well-known integral transformation,
like the Fourier or Fresnel transformations {2, 3], but more often the transformations
are represented on the basis set of Generalized Functions [3] or on the basis of
Empirical Orthogonal Functions (EOF) [4].



Radon’s ideas are fundamental principles of the reconstruction of localized
characteristics of inhomogeneities from the measured integral characteristics. The
successful application of these principles for solving practical problems has been
attained only when the development of theory and numerical algorithms [5], and the
manufacture of powerful digital computers came together in the early 1970's. This
has resulted in a veritable revolution in medical radiology that has allowed the
imaging of the internal organs of the human body. Techniques have subsequently
been developed for the X-ray and ultrasonic applications {6, 7].

1.2 GOALS OF TOMOGRAPHIC RECONSTRUCTIONS
FOR THE OCEANS

Electromagnetic and optical methods for the remote sensing of the ocean
environment are well-known. However, these methods are generally limited to
sensing phenomena in the oceans’ upper layers. Acoustic waves, which interact with
the ocean, transport information about the conditions in the ocean volume,
particularly, about inhomogeneities and variations in medium parameters. Acoustic
waves can be an effective tool for remote investigations of the ocean volume, ocean
bottom, as well as the ocean surface, because of their ability to propagate long
distances in ocean waveguides. Accordingly, the goal of acoustic remote sensing is
a reconstruction of the characteristics of inhomogeneities by measuring the parameters
of the received acoustic signals.

Remote sensing by acoustic waves was an essential tool for the investigation
of ocean structure even before the introduction of basic tomographic concepts into the
ocean study [8-11] (for example, the ubiquitous acoustic depth sounder). The
tomographic method for the reconstruction of localized (differential) characteristics
of the ocean medium was proposed by Munk and Wunsch in 1979 [12]. They also
introduced the term of "Ocean Acoustic Tomography" (OAT). OAT has refined
ocean sensing and established the distinct methodology for the study of the ocean
medium on many scales from the minute to the global.

Acoustic signals propagating along acoustic paths contain integrated
information about all inhomogeneities that are distributed along these paths. Each
measurement of the acoustic signal gives us only averaged information about all
" inhomogeneities along the path of propagation [8-10, 13]. On the other hand, the
tomographic approach allows for simultaneous measurements of the observation
environment with overlapping, but different views. It provides for the reconstruction
of inhomogeneities in the volume when the observation system is properly configured
and the resulting data are analyzed with the appropriate algorithms. The spatial
distributions (images) of the characteristics of inhomogeneities in the observed area
can be determined by scanning different properties of the sensing acoustic waves.
The reconstruction of the spatially localized (differential) characteristics of media
(inhomogeneities in the ocean volume in our case) is a goal of ocean acoustic
tomography. . .

Tomographic methods can be applied to the solution of many practical
problems associated with the marine endeavors of mankind: exploitation of marine
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resources, including fisheries and minerals; prediction of weather and climatic
changes, including the monitoring of the global warming; underwater engineering
activity; and marine navigation. The tomographic reconstruction of oceanic
inhomogeneities and their temporal variability can help oceanographic research, such
as the study of motion of the water masses in flows and eddies, investigations of the
characteristics of different types of ocean waves (surface waves, internal waves,
Rossby waves), and the study of smail-scale phenomena (bubble clouds and fish
shoals) [8, 9, 11]. For an important contemporary concern, tomography can
contribute in the study of the global warming [12, 14, 15]. Thus, there is a broad arca
of problems associated with marine commercial activity and oceanographic research
that can be solved by the methods of ocean acoustic tomography. :

Some of the major factors promoting the creation and development of OAT
methods are:

a) Practical applications associated with needs to understand the ocean;

b) Success of the acoustic monitoring of the ocean;

¢) Development of techniques for acoustic tomography;

d) Creation of powerful digital computers; and )

) Development of theories and algorithms for modeling acoustic propagation
and scattering in the ocean and methods for solving integral equations.

This list is not complete; in fact, we have only sketched the variety of problems that
can be resolved by tomographic methods. While the United States has taken one
direction in the development of these methods, the Russians have taken another. Our
goal here is not only to review ocean acoustic tomography, but also to slant the review
with a Russian flavor. This review, however, would not be complete without
including the broad American literature on this topic. An excellent book by the
inventors of ocean acoustic tomography already exists that details the contributions
of the USA to the subject [16]. The US literature will be cited less frequently than
Russian works in this review because the American publications on topics of OAT are
more accessible and better known to the American scientific community.

In summary, it is. important to mention that the monitoring of large ocean
regions can be carried out by using OAT and can supplement electromagnetic and
optical remote sensing for a more complete description of the ocean. The
mathematical and physical bases of the tomographic methods have been developed
before its application to the monitoring of the ocean [1, 5, 6, 19-20]. Therefore, ocean
acoustic tomography can be considered as an adaptation of those bases to ocean
conditions. However, investigations have shown that this generalization has not been
easily achieved due to the specific conditions for acoustic signal propagation in ocean
waveguides and due to engineering problems associated with measurements in the
ocean.

A choice of the particular tomographic approach for the solution of a given
ocean observation problem depends on the nature of the inhomogeneity to be
investigated and the background ocean conditions in which signals are measured.
Moreover, the OAT algorithm, similar to the solution of the inverse problem, is
dependent on the ability to model the forward acoustic propagation in the ocean, and -
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to model the particular types of inhomogeneities and their effects on acoustic
propagation. Before discussing OAT in detail, it is useful to mention a few aspects
of acoustic modeling and some models describing oceanic inhomogeneities.

1.3  MODELS OF ACOUSTIC WAVE PROPAGATION IN THE OCEAN

The layered waveguide is a simple model for horizontally stratified regions of
the ocean. Sound speed changes rapidly with depth in such waveguides, but changes
in range are generally relatively weak. An underwater sound channel trapping
acoustic signals arises for a special vertical sound speed profile, c(z), for which there
is a minimum value of the sound speed at a certain depth.

Acoustic waves in different ocean waveguides propagate in the form of
space-time structures which can be observed and described within ray or modal
representations [3, 8, 16, 22]. Both representations of acoustic waves can be obtained
as solutions to the Helmholtz equation describing the propagation of a linear harmonic
wave:

Vip+k?p=0, - (1.2)

where V? is the Laplace operator, p=p(x,y,) is the sound pressure, = o/ c(x,y,z) is the
wavenumber, and o is the angular frequency. Further, o =2rf=2n/T, where S is the
frequency and 7 is the period of the sound wave.

If the medium is weakly inhomogeneous, i.e., if the magnitude of the sound-
speed gradient, |Vc|, satisfies the condition

-)‘-'IVCI«I, 1.3)
c

where A is the wavelength, the medium is said to satisfy the adiabatic approximation.
Under the condition of the adiabatic approximation, the solution of Eq. (1.2) can be
represented as a ray series: ,

N
PR =L A, (RyexplikyfY (R, : (1.4)

where R is the position vector of the point with coordinates (x.y,z), 4, and kW, are
the amplitudes and the phases of rays, &, =wlc,, and ¢, is the reference sound speed
at some fixed point of waveguide (usually at the point where the sound source is
located). The values 4, and W, can be determined from the transport and eikonal
equations of the ray acoustics, and the latter is called the eikonal [8].

For the case of horizontally layered waveguides, the solution of the Helmholtz
equation can be decomposed into a sum of basis functions (modes) by the method of
separation of variables. According to the boundary conditions and the radiation
conditions at infinity, the solution can be written as the sum of waveguide modes:
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y ,
P =Y 0,V Hwk,r), (1.5)
m=1

where r is the horizontal distance in the two-dimensional cylindrical coordinate
system (azimuthal symmetry is assumed), «, is the horizontal wavenumber for the mth

mode, and the ¢, ’s are the vertical eigenfunctions for the waveguide modes, H{" is
the zero-order Hankel function of the first kind, and the c,’s are the excitation

coefficient of waveguide modes [8].

A choice of the ray or modal representations (by Eq. (1.4) or by Eq. (1.5),
respectively) in ocean waveguides is determined by efficiency and convenience of
their application. The effectiveness of the description of the interaction of sensing
acoustic waves with inhomogeneities is important for the solution of the inverse
problem and, in particular, for tomographic reconstruction. Thus, the mode approach
can be used for calculating acoustic-wave propagation in shallow water, The shallow-
water case usually corresponds to the ratio of the water-column depth to the signal
wavelength not exceeding ten. On the contrary, the ray approximation is more
effective for calculating high-frequency acoustic wave propagation in deep water,
especially, for the cases of horizontally inhomogeneous waveguides.

Rays. Initially, tomographic principles were proposed for the reconstruction of
relatively smooth sound speed variations in the ocean (cf. Eq. (1.3)). The travel-time
delays between ray pulses crossing the observed inhomogeneities at different angles
can be measured in this case [12]. Investigations have also shown that the ray
approach is effective enough for numerical estimation of phenomena associated with
propagation of acoustic waves in the deep ocean, as well as their interaction with
inhomogeneities.

Modes. In shallow water the interference among the numerous boundary-reflected
paths creates space-time structures which are more readily described by modes. The
separated waveguide modes play the role of elementary tomographic projections, and
the measured parameter can be the phase of the mode. In the case of the interaction
of sensing waveguide modes with smooth inhomogeneities, the modal adiabatic
approximation can be used [8, 23].

Thus, for the cases of relatively smooth inhomogeneities, which allow the use
of the adiabatic approximation, either ray or modal acoustic-wave descriptions can be
applied as convenience dictates. For oceanic inhomogeneities characterized by more
sharply defined boundaries, a coupling between modes exists, so that a transfer of
acoustic energy among the different modes or rays occurs. In these cases diffraction
and scattering models must be used to describe the interaction of the probing waves
with these sharply defined inhomogeneities. Different diffraction and scattering
models have been developed for the investigation of the efficiency of tomographic
methods for reconstruction of this type of oceanic inhomogeneities [22, 24-32].
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1.4 TYPES OF OCEANIC INHOMOGENEITIES

Characteristics of oceanic inhomogeneities are determined by various
hydrophysical processes in the ocean environment. Very broad limits of the
variability of spatial, L, and temporal, T, inhomogeneity scales in the ocean are the
results of the complex processes associated with ocean dynamics and different types
of inclusions in the ocean. Furthermore, tomographic methods are not limited to the
applications in the water column. Inhomogeneities in the bottom and bottom
properties are also a subject for tomographic investigations. However, in the
following discussion we shall focus mostly on the ocean dynamical processes in the
water column.

As measurements and experimental observations have shown, the spatial and
temporal scales of oceanic inhomogeneities are bounded by the following values:
103< L <10° m and 10%< T<10¢ s. These overall space-time scales of inhomogeneities
in the ocean can be further subdivided into micro-scale, meso-scale, synoptic, and
gyro-scale inhomogeneities. The subdivisions are related to the basic ocean dynamic
processes and can be distinguished by the following approximate classification
scheme presented in the literature [9, 10, 13, 24, 33].

Micro-Scale Inhomogeneities. The following inhomogeneities can be classified as
micro-scale: :

a) micro-scale turbulence:
10%< L<10m, 1073< T<10? 5;
b) vertically layered ocean structures:
1073< L<10m, 10%< T<10% s,
¢) capillary surface waves:
103<L<102m, 107'< T<10 s;
d) gravity surface waves:
107'< L <10?m, 1071 T<10? 5;
e) short-period internal waves:
10'< L <10°m, 10%< T<10% 5.

- Meso-Scale Inhomogeneities. This class of inhomogeneities includes:

a) long-period internal waves:
103< L <10%m, 10°< T<10% 5,

b) inertial waves:
103< L <10°m, 10°< T<10° 5;

¢) tidal flows in shallow water;

d) meso-scale turbulence.

Synoptic Inhomogeneities. Synoptic inhomogeneities are associated with:

a) movements of hydrolenses of cool and warm water;
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b) ocean eddies:
10°%< L <10°m, 10°< T<10% 5
¢) the Rossby waves:
10%< L <10° m, 10°< Tle(’

Gyro-Scale Inhomogeneities. Gyro-scale inhomogeneities, related to the ocean
circulation and seasonal varlablhty, have very large space-tlmc scales; equivalent, for
example, to the scales of oceanic basins,

This classification of inhomogeneities comes from different water motions in
the ocean environment, differential heating near the ocean surface, and wind and tidal
effects. All these inhomogeneities play a significant role in ocean activity in the
layers close to the surface. They can be distributed through and below the major
thermocline (a region of strong negative vertical gradient in temperature 100-1000 m
below the sea surface). Additionally, there are various inclusions in the ocean
environment that also represent inhomogeneities. These can, for example, be
particles, bubbles, fish and plankton, fish shoals, clouds of bubbles, ice floes, ships,
and engineering constructions. The inclusions can also fit within the micro-scale and
meso-scale classification.

On the other hand, all types of inhomogeneities can be distinguished as "weak"

r "strong." Weak inhomogeneities cause refraction of sensing waves. Strong
inhomogeneities are non-adiabatic and lead to diffraction. Diffraction causes the
redistribution of the modal or ray spectrum and creates new modes or rays. Such an
additional differentiation is based on the relation between the acoustic wavelength and
changes in the inclusion’s characteristics (Eq. (1.3)). From this viewpoint, we can
speak of smooth (weak, refractive type) or sharp (strong, diffractive) changes of the
inhomogeneity properties within the acoustic wavelength. It is easy to understand that
this relation determines the peculiarities of sound propagation in the observation
region of the ocean. It also determines the sizes of the cbservation region, the noise
level, the sound-source power, and other physical parameters.

1.5 PHYSICAL MODELS OF OCEANIC INHOMOGENEITIES
AND ACOUSTIC INTERACTIONS

For the application of tomographic methods to sensing ocean processes, a
physical mode! is generally required as a starting point for the inverting reconstruction
‘technique to obtain the environmental properties. The mcdel usually includes the
physical description of the specific inhomogeneity and the acoustic-wave interaction
with it. Different physical models, based on the results of experimental observations,
are used to describe the characteristics of oceanic inhomogeneiiies. These models can
include deterministic as well as statistical approaches. The following are some
examples of the physical models of oceanic inhomogeneities, which are often used for
the investigation of OAT system performance. (Here we simpiy convey the concept,
but do not provide a complete list of models. 'Later more detaiis will be provided
when necessary.)
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- Modeling Ocean Surface Inhomogeneities. Models have been developed to describe
the details of the creation of surface waves and scattering of sound by them [8]. It is
well-known' that the major cause of surface waves is the influence of wind.

" According to the nature of surface waves, a statistical approach is used to describe
their properties. This is generally done by using models descrlbmg the surface-wave
power spectrum properties. One of the model examples is the Pierson- Moskowitz
spectrum [3, 8]. Theories also provide models for forward and backscattering from
the surfaces descrlbed by power spectrum models [8]. ~

Modelzng Internal Waves. The Garret-Munk model is often used for the description
of the spectrum of the background field of internal waves [4]. One should generally
use a statistical approach to descrlbe the acoustic refractlon in the stochastlc internal
wave field.

Modeling Bottom Inhomogenemes Varlous types of inhomogeneities that describe
the bottom and its interaction with acoustic waves have been intensively investigated.
Despite much effort, a general methodology of the bottom description for the robust
application of tomographic methods (espec1ally, diffraction and differential
tomography) has not been developed. There is no developed universal model for the
description of the seafloor and the acoustic interaction with it at this time. This is due
to difficulties associated with the complex structure of the real ocean bottom as well
as due to practical problems associated with the application of the techniques.
Nevertheless, simple models of the acoustic reflection from the shallow-water bottom,

- for example, modeled as an elastic half-space [8] or as an isovelocity fluid layer over

- the elastic half-space [8], have shown a relatively high efficiency for calculation.
However, the use of such models sometimes fails to explain measured acoustlc data
or to extract some useful detalled bottom properties. .

Modehng Other Inhomogeneltzes Information about models descrlbmg other types .

- of oceanic inhomogeneities is practically absent from the literature, apparently, due
to shortage of appropriate experimental data. Nevertheless, it is important to mention
some examples. The Gaussian spectral model has been applied to describe the
structure of the fluctuations of the sound-speed profile in the water column [3]. A
polynomial functional form of the spectrum has been used for the description of
turbulence pulsations [13, 35). Finally, ice floes, engineering constructions and other
similar inhomogeneities can be considered as elastic or xmpedance objects causmg the

‘dxffractlon of acoustic waves [19, 24-32]. ~

| 16 . AN INTRODUCTION TO RUSSIAN OCEAN ACOUSTIC .
TOMOGRAPHY

~ This sectlon discusses the contributions of Russxan scxentlsts on specxﬁc topics
that are related to general ocean acoustic tomography problems. .

Investigations that can be identified with OAT began in Russia in 1984 [14, 15,
'36]. The ﬁrst pubhcatlon on the OAT topic dealt with numerical modelmg to
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optiinize measurement schemes [14]. In Russia before 1984, as in the USA before
1979, much fundamental ocean acoustic tomographic research had been carried
although not specifically identified with the term “ tomography” [37-40]. Many
Russian works from that time were related to the development of methods for noise-
source-image reconstruction in layered waveguides. Additionally, the general
. methods for the solution of the inverse problem had also been developed in Russia -
. before an identifiable beginning of OAT investigations {5, 6]. In particular, methods
for regularizing and optimizing the solutions of inverse problems had been proposed
~ [6, 41]. The investigations associated with the traditional idea of OAT as the
reconstruction of large-scale smooth perturbations in the sound-speed profile in the
-ocean were also conducted [8, 36, 37]. Progress and problems of OAT were
forimulated and analyzed by Goncharov and Kurtepov in 1987 [23]. , :

At the same time efforts were made towards the separation of OAT methods
from the viewpoint of using different technique, such as the modal tomographic
methods [42, 43], diffraction tomographic methods [2, 19-21, 34, 35, 44-51] and so
on. The Doppler tomoegraphic method has been successfully proposed to explore the
bottom structure as well as the inhomogeneities at the ocean surface [43, 52]. Ocean
acoustic tomography methods using complex pulse signals, synthetic apertures, and
noise acoustic sources have been also studied [53-59].

- Finally. the design of the hardware to carry out OAT experiments in the real
ocean has been accomplished, and appropriate experimental equipment has been built
[43,52-55,57]. A hallmark in the development was reached during the experiments
in the North Atlantic in 1990 [57], where a vertical receiving array and a matched-
field procedure were used for the tomographic reconstruction of the two-dimensional
spatial distribution of sound-speed perturbations. S

Through the mutual understanding of the contributions, that have been and are
still to be made by the partner countries science programs to achieve a better
understanding of real ocean processes, an effective use of the available resources can
be reached through cooperative international programs in the large-scale monitoring
of the global ocean by using OAT [17, 54, 57, 60]. This work is dedicated to .
fostering this better understanding. .



Chapter 2:

PRINCIPLES AND METHODS OF OCEAN ACOUSTIC
TOMOGRAPHY

2.1 THE GENERAL SCHEME OF OCEAN ACOUSTIC TOMOGRAPHY

In building a general scheme for differerit ocean acoustic tomographic methods,
a broad interpretation of OAT will be used. In this chapter, along with the common
methods interpreted as tomographic, such as pulse probing with the use of received
pulse travel-time delays and intensity for reconstruction purpose, other acoustic
inversion methods known and used before the formal development of the OAT
concept will be discussed. Also, several new ideas closely associated with inverse
problems, will be iniroduced. Essentially the only distinction between the termn
"Ocean Acoustic Tomography" and the term "Acoustical Oceanography," which is
commonly used in the underwater acoustics community today to imply the use of
acoustics to study the oceans, is the additional implication that the former is firmly
based on the inversion of an integral equation. Here we shall explore the middle
ground between acoustical oceaniography and the general inverse problem applied to
the ocean. From this point of view, the terminology and principles for the
classification of OAT methods are a little more general than usually assigned to it.

To illustrate the application of tomography to the ocean probiems, let us
consider the solution of the integral equation (1.1), which was described in the first
chapter. Equation (1.1) can be classified as the Fredholm integral equation of the first
kind. Depending on the nature of the kernel, y(R,/;r,7), the inverse problem can be
either well-posed and solvable or ill-posed and non-solvable. In practical situations
the objective of OAT is to redefine the problem so that Eq. (1.1) can be solved. The
set of measured data. o(R,t), associated with the kernel is called the "tomographic
projection." Tomographic projections can have forms depending on the scheme of
tomographic observation and the structure of the ocean waveguide. The various forms
have some basic properties. However, they represent the path-integrated
characteristics of inhomogeneities. Thus, they describe the observed object on
average for the given parameters of measurement scheme (e.g., angles of observation
or frequency of insonifying wave).

2.2 SOME FEATURES OF THE SOLUTION OF TOMOGRAPHIC
PROBLEMS IN THE OCEAN

A simple tomographic scheme, involving an object producing nonuniform
losses for acoustic waves propagating through it, can be formulated as follows. The
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observed object, g(r,1), is reconstructed by using a set of M projections, which
correspond to propagation along a set of ray paths, /,. Equation (1.1) can be reduced

in this case to

fg(xy)d1=(p,, i=1,..,M, 2.1
li

where ¢, is the measured integrated loss for the ray crossing the inhomogeneity,

g(x,), along the ith trajectory. The classical tomographic method for the solution of
Eq. (2.1) is the inversion method developed by Radon {1]. However, here another
method will be used to illustrate problems that are relevant to OAT. Equation (2.1)
~ can be presented as a system of linear algebraic equations (SLAE) if the observed
inhomogeneity can be segmented into N cells along the ith path, where within the jth
cell, g,=g(x,y) can be assumed to be constant. Then equation (2.1) becomes:

N
ZD,.jgjqpi, i=1,.,M, (2.2)
Jj=1 .

where D, is the length of the ith trajectory within the jth cell.

Since the solution of an SLAE should be definite and stable, the method of
measurement and the system of basic functions must be optimized. A priori
information about the unperturbed medium, as well as the hypothetical structure of
the observed object, can be used to accomplish this optimization. The absence of a
priori information can lead to ambiguity in the solution. Equation (2.2) usually
represents a non-correctly stated problem, so direct inversion of the matrix for the
appropriate SLAE is ineffective. To resolve similar problems in OAT, analytical
solutions of the integral equation are used. Analytical solutions can be obtained if the
conditions of the problem allow for simplifications or by the use of methods of
algebraic reconstruction under regularizing algorithms, such as the method of
Maximum Entropy [5, 12, 23, 41, 51]. ’

2.3 CLASSIFICATION OF OAT SCHEMES

Different tomographic methods have been proposed for the reconstruction of
object structures in ocean waveguides. These methods are distinguished by the
characteristics of an unperturbed waveguide and its inhomogeneities and by the
acoustic systems and methods employed. Inhomogeneities with different space-time
scales can be reconstructed by appropriate tomographic methods using the
peculiarities of acoustic-wave propagation in ocean waveguides and wave interaction
with observed inhomogeneities.

For the purpose of OAT classification, we re-group oceanic inhomogeneities
(cf. section 1.4) into two broader classes: a) large-scale inhomogeneities (synoptic and
gyro-scales with characteristic lengths L >100 km) and b) small-scale inhomogeneities
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(micro- and meso-scales with characteristic lengths Z <100 km). It is important to
mention that oceanic inhomogeneities are usually anisotropic with respect to the
horizontal and vertical planes, with the horizontal scales being significantly larger.
The gradients of the acoustic property for the large-scale class are generally smaller
than those for the small-scale class. To investigate the large-scale inhomogeneities,
low frequencies (f <1 kHz) are required for the long-range propagation. Higher
frequencies (f2 1 kHz) can be used for the small-scale class since ranges of interest
are shorter. In combination, the gradient of ocean property and applicable frequency
ranges (see inequality (1.3)) suggest an additional degree of freedom in classifying
OAT schemes as discussed below.

Adiabatic Approach for Weak Inhomogeneities. The condition for application of the
adiabatic approach can be expressed by the following inequality [24, 31]:

D,«L, (2.3)

where D, is the horizontal length of the complete ray cycle or the horizontal scale for

the interference pattern of two waveguide modes. Large-scale inhomogeneities satisfy
inequality (2.4), and the transformation of energy among rays or waveguide modes
during the acoustic-field interaction with the inhomogeneity is negligible for this
class, so that the adiabatic approach can be applied.

Diffractive Approach for Strong Inhomogeneities. On the contrary, small-scale
inhomogeneities do not satisfy inequality (2.3) and create a significant transformation
of energy among modes. They can induce perturbations in the vertical plane as well.

However, the classification into these categories is not fixed. In shallow water,
for example, adiabatic techniques can be applied for horizontal cycles, D, , less than
10 km. In deep water, where D, =50-70 km is possible, diffractive techniques can be
used.

The differences between adiabatic and diffractive approaches from the
viewpoint of OAT determine the schemes of tomographic observation and the set of
measured values. Time delays and losses of acoustic signals are appropriate for
adiabatic methods. Complex amplitudes of diffracted and scattered waves are used
for diffractive methods.

It is important to note that inhomogeneities of various scales exist
simultaneously in the ocean. They can also change randomly in time. Generally,
when conditions and scales are quite random in space and time, some particular
inhomogeneity is an object of interest and the rest is considered as noise.  Often a
statistical approach is required to solve this kind of problems.

Statistical Approach for Temporally Random Inhomogeneities. Some oceanic
inhomogeneities move or change quickly and randomly. In this case a statistical
analysis of the received information is necessary. The effectiveness of the statistical
approach depends on the space-time scales of the oceanic inhomogeneities and those
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of the observing tomographic system. The use of the statistical approach for
tomographic reconstruction does not significantly change the -scheme of
measurements.

The general problem of tomographic reconstruction in the ocean is the
separation of information about observed inhomogeneities from measured data. This
problem can be solved by using a priori information about the space-time
characteristics of the particular inhomogeneities for creating the appropriate
reconstruction algorithms [18].

Before discussing different tomographic scheme, we should note that the
structure of unperturbed ocean waveguides can also influence the classification of
OAT methods significantly. First, the mode or ray basis of tomographic algorithms
depends on the nature of the ocean waveguide. Accordingly, the ray and mode
approaches can be used to investigate both adiabatic and diffraction OAT methods.
Thus, numerous combinations of the classes of methods can be found in the literature,
including the ray adiabatic method [14, 15, 231, the mode adiabatic method [36, 42,
61-64], the interference adiabatic method [50, 65), the differential method [2, 18, 46-
50], the location methods [18, 66, 67], the ray-diffraction methods [9, 27, 30, 67-73],
the Doppler method [43, 52, 74, 75], the Fresnel method [34, 35, 76-80], and, finally,
the diffraction method with partially coherent insonification [81, 82]. The last
method can be used for reconstruction of both regularly and randomly distributed
inhomogeneities in the ocean.

In addition, it is important to distinguish between the two most general groups
of OAT methods: Emission Tomography and Transmission Tomography. There is
a third general group which is termed “Partially Coherent Acoustic Tomography.”
This latter group is somewhat of a hybrid between the first two. These categories will
be introduced in the next several sections but covered in greater detail in later
chapters.

2.4 TRANSMISSION OCEAN ACOUSTIC TOMOGRAPHY METHODS

The first and most often applied OAT scheme is called the "Transmission
Tomography Method." In transmission tomography CW signals are usually used. The
received signal amplitude, phase, intensity, travel time, or space-time coherence (for
randomly distributed oceanic inhomogeneities), as well as the parameters of complex
pulse signals after matched filtering, can be used to extract information about
inhomogeneities [48, 50, 66]. Transmission toinography can be either adiabatic or
diffractive. :

Unlike Eq. (1.1), the integral equation for transmission tomography has an
additional term, gy(R.7), which describes the direct illuminating wave in the region of

measurement. Then, we arrive at the Fredholm integral equation of the second kind
ORN) =g (R.- f f Y(R,r)g(r D) dr, 24)

which usually has a stable solution,
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It can be shown that the kernel of Eq. (2.4) is dependent on the observed
inhomogeneity, g(r,1), for refractive as well as boundary types of inhomogeneities.
This condition makes the transmission-tomography problem nonlinear. A series of
approaches and algorithms are used to linearize Eq. (2.4) for certain conditions [12,
23, 41, 44]. The ordes of non-linearity is closely associated with the strength of the
inhomogeneity. For relatively weak inhomogeneities, which satisfy the Born or Rytov
approximations, the problem can be linearized with satisfactory accuracy [41, 44].

When the scattered waves are of the order of the illuminating waves, multi-
scattering processes may be important, and Eq. (2.4) remains nonlinear. Different
iteration methods have been proposed to solve the nonlinear tomographic problem.
One method involves successive Born approximations using prior approximations as
the solution of Eq. (2.4) in successive iterations [83]. Another method uses a priori
informatjon about the unperturbed ocean waveguide, which provides the possibility
of reducing the nonlinear problem to the problem with weak inhomogeneities. Thus,
to overcome the non-linearity difficulties in the ray-type OAT, an initial model of the
ocean with inhomogeneities can be used. An example of this approach is the
tomographic reconstruction of ocean eddies [23].

The kernels Egs. (1.1) and (2.4) are determined by the Green’s function of
ocean waveguides, by OAT algorithms, and by description of waves in the ocean.
Therefore, the Green’s function of the unperturbed waveguide is considered as a
priori information, which can be used for the construction of OAT algorithms. The
accuracy of the unperturbed waveguide description determines the tomographic
reconstruction efficiency. As was mentioned, the ray or mode approaches are usually
used for the description of acoustic waves in ocean waveguides. These approaches
are based on the sets of a priori hypotheses concerning the ocean waveguide structure
in the given observation region. For example, as Fresnel Tomographic
Reconstruction has shown interference among waveguide modes leads to muitiple
images of a single, spatially localized inhomogeneity if the free-space Green’s
function is put into the reconstruction algorithm [35]. Accordingly, a priori solution
of propagation and scattering problems for ocean waveguides can play a key role in
obtaining accurate solutions of problems associated with tomographic reconstruction
in the ocean {11, 41, 44, 48].

From a practical point of view, the measurements of tomographic projections
can be accomplished by using spatially distributed receiving arrays of hydrophones
as well as receiving antennas with synthetic apertures generated by the mixing of the
illuminating acoustic sources and/or receiving arrays. Tomographic methods using
synthetic apertures are called "Tomosynthesis" or "Dynamic Tomography" [14].

I is clear that the measurement time in tomographic experiments is limited by
the stationary time of observed object or of the intervening medium. This last remark
is related to tomographic reconstruction of randomly distributed ocean
inhomogeneities, like surface waves, turbulence pulsations, and so on. Appropriate
schemes and atgorithms have been proposed to solve such problems [46, 52, 59]. The
schemes of tomographic measurements for randomly distributed oceanic
inhomogeneities are practically the same as for deterministic ones, but the algorithms
have some specific features. According to the nature of random inhomogeneities,
statistical moments, e.g., coherence function or intensity are exploited in the
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reconstruction algorithms. The prbjection equation for intensity of acoustic signals
can be represented in the following form:

lof?=gy|*+ f"'fW(RJ;’pfl)\l"(RJ;"z:Tz)<g("1>Tx)g (rpy)>du dudridr,, 2s3) .

where <.> denotes statistical averaging, and t,-1, and r,-r, determine temporal and

spatial shifting, respectively, for the Space-Time Correlation Function (coherence
function) calculation. Equation (2.5) follows from the assumptions that the direct and
scattering waves are not spatialty and temporally correlated (are not coherent), and the
Born approach is satisfied. According to Eq. (2.5), in this case tomographic
reconstruction reduces to the reconstruction of a power spectrum or coherence
function of the inhomogeneity using the measurements of the intensity of scattered
waves [48]. '

This type of OAT usually implies the presence of special acoustic sources for
the illumination of observed objects. Information about observed inhomogeneities
is contained in acoustic signals interacting with objects, in particular, in measured
time delays for adiabatic methods and in complex amplitudes of diffracted waves for
diffractive methods. According to the peculiarities of the interaction of acoustic
waves with oceanic inhomogeneities, two types of transmission OAT methods can be
singled out. They are the subjects of the following two sections.

2.4.1 Methods for the Reconstruction of Synoptic and Gyro-Scale
Inhomogeneities

Ray, Mcde, and Interferometric Tomographic Methods will be discussed here
to continue the classification of OAT methods based in the adiabatic approach for the
reconstruction of synoptic and gyro-scale inhomogeneities.

Ray tomographic reconstruction of spatial disiributions of the sound speed and
ocean currents is based on observing changes in time delays of short acoustic pulses
propagating along the ray trajectories. A model of the unperturbed medium has to be
specified to provide linearity in the integral equation, Eq. (2.5), connecting the
measured time delays with small perturbations of sound speed or current distributions.
To solve similar problems using the mode-type method (assuming the modal
description of propagation in a waveguide), variations of received signal phase or
travel times are used [36, 42]. A two-dimensional cylindrical surface with its normal
directed along the ray trajectory in the horizontal plane represents an integration
domain in the integral equation for this case. A peculiarity of this approach is a
possibility to factoring the kernel of the integral equation, which can be presented as
a product of functions for horizontal and vertical coordinates, respectively.
Accordingly, the procedure of tomographic reconstruction is also reduced to two
steps. First, the horizontal structure is reconstructed. Secondly, the vertical structure
for the fixed horizontal plane is restored. It is clear that the mode tomography method
is based on modal selection by an array itself or by using a filtration in the time or
frequency domains.
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The differences between measured characteristics in the mode and ray
tomographic methods lead to the differences in the application for solutions of
practical problems. The ray method is more convenient for application in the deep
ocean, while the mode method can be effectively used in shallow water or subsurface
waveguide channels.

The interference structure of the sound field in the ocean in the spatial domain
is used by the interferometric OAT method for tomographic reconstruction of
variations in sound speed. Perturbations in modal phases are determined by
measurements of the perturbations of the interference structures of the acoustic field.
Similar to the mode method, the kernel of the integral equation is also factorized for
the interferometric method simplifying the reconstruction procedure. The general
classification of tomographic methods, based on are the adiabatic approach, is shown
in Table 2.1.

TABLE 2.1. ADIABATIC METHODS OF OCEAN ACOUSTIC TOMOGRAPHY

METHOD OBJECTS RECONSTRUCTION | MEASUREMENT
TYPE
ray ray pulse temporal
. delays
synoptical and sound-speed
mode gyro-scale distribution modal pulse
inhomogeneities temporal delays,
mode phases
interferometric - » field interference
: : structure

2.4.2 Methods forl the Reconstruction of Méso- and Micro-Scales Oceanic
Inhomogeneities .

Using the classification of oceanic inhomogeneities, discussed in Chapter 1,
one can single-out deterministic spatially localized and randomly  distributed
inhomogeneities of meso- and micro-scales in the ocean. Then, one needs an
appropriate description or model that leads to differences in the algorithms for

- reconstruction and in schemes of tomographic measurements.

The classification of tomographic methods for reconstruction of such oceanic
inhomogeneities can be based on different approaches that are used for the solutions
of appropriate scattering and diffraction problems [3, 49]. It is usually necessary to
separate weak and strong inhomogeneities. A method based on the Born
approximation is used for weak inhomogeneities that are characterized by the small
scattered field relative to the incident field [8, 31]. The Rytov approximation can be
used to solve the tomographic problem for large smooth inhomogeneities [30, 31].
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The space-time coherence function for the scattered waves should be used for
tomographic reconstruction of space-time distributions of local frequency-angle
inhomogeneity spectrum. Differences in the form of the integra! equations are
determined by the structures of oceanic inhomogeneities. The region forming the
scattered signals for smooth meso-scale inhomogeneities is displaced along the path
connecting the source of the illuminating waves and the receiving system. The
approximate condition, when the refraction of probing waves in the horizontal plane
can be neglected, is determined by the inequality g, <g,, where ¢, is the characteristic

width of diffracted patterns of the scattered waves in the horizontal plane and ¢, is the

angular resolution of observation systems. The direct-illuminating waves masks the
scattered field in this case. Reduction of this effect is necessary for successive
tomographic reconstruction. There are several approaches for resolving this problem.
For example, in the Differential Tomography Method the excited modal spectrum is
strongly displaced relative to the measured modal spectrum [46, 49]. Other
techniques involving different methods of space-time filtering are discussed in [74,
75]. It is interesting to note that this problem can also be solved by using natural
shadow zones in ocean waveguides, which are the result of the peculiarities of
acoustic waves propagation in a stratified ocean [77].

TABLE 2.2. DIFFRACTION METHODS OF OCEAN ACOUSTIC
TOMOGRAPHY

METHOD OBJECTS RECONSTRUCTION | MEASUREMENT
TYPE
ray internal waves averaged ray pulse
characteristics time delays
mode | surface modal phases
inhomogeneities
- ; local spectrum . )
differential meso-scale intensity, modal
inhomogeneities time delays
location micro-scale intensity, pulse
inhomogeneities delays
Doppler surface waves, wind speed, heighis of | losses, frequency
bottom inhomogeneities shift
inhomogeneities

Refraction of acoustic paths in the horizontal plane can not be neglected for the case
of micro-scale oceanic inhomogeneities (when g,>¢,). In this case the separation of
the scattered signals from the direct-field background can be accomplished by using
the space-time filtering [3, 46, 49, 66]. This reconstruction approach requires strong
inhomogeneities and some a priori knowledge about them [3, 41, 44]. Similar
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problems arise for tomographic reconstruction of the spatially localized objects [70,
751.

For the case of randomly distributed oceanic inhomogencities, a regular
interference structure between the illuminating and scattered waves exists. This fact
can be used for tomographic reconstruction [75-80]. The solutions of integral
equations for such inhomogeneities are determined by the coefficients of the mode-
interaction matrix used for reconstruction of the characteristics of inhomogeneities
{75, 76].

Table 2.2 shows the classification scheme for diffraction OAT methods.

2.5 EMISSION OCEAN ACOUSTIC TOMOGRAPHY METHODS

The Emission Tomography Method is used for the observation of natural
acoustic sources, for example, ocean noise sources [58]. However, man-made, but
non-intentional, sources such as ship noise can be considered as sources for emission
tomography as well. According to this method, space-time distributions of such
acoustic sources in ocean waveguides are reconstructed by using tomographic
algorithms to process data measured by spatially distributed receivers or by synthetic
aperture receiving systems placed far from the observed objects. Information about
acoustic sources is extracted from the space-time coherence functions. As a rule,
measurements are carried out for a wide frequency band. Tomographic reconstruction
in this case is reduced to the solution of the projection integral equation, Eq. (2.1).

“Such equations represent non-corrective problems.

Three types of emission tomography can be defined tentatively with respect to
distances from the observed sources to the receiving system. Reconstruction of the
details of complex radiating noise sources (for example, ships) from near-field
measurements is the emission tomographic scheme of the first type [84, 85]. The
difficulties associated with this type of tomographic problems concerns dealing with
non-propagating acoustic-field components, which are important in the near field of
complex acoustic sources. The second type of emission tomography is associated
with the reconstruction of the space-time distribution of noise sources for mid-range
distances (for example, a distribution of noising ships near ports or a bubble cloud
below the sea surface) [86]. Finally, the third type is the reconstruction of low-
frequency natural noise sources in the ocean, which determire the noise background
in the ocean and put limitations on the tomographic system performance [58].

Emission tomographic methods work without special sound illuminating
sources, so the measurement scheme is easier to fulfill. But appropriate algorithms
can be more complicated because of the noise nature of the observation objects and
the necessity of processing the signals in a wide frequency band.

Usually, emission tomography is associated with the solution of the problems
involving reconstruction of spatial distributions of ocean noise sources. The robust
processing algorithms used in the technique require measurements of the noise field
from twe or more spatially distributed receivers to allow for the variation of the
observation angles [58, 85, 86]. The common models of ocean noise sources for
emission tomography include sources spatially distributed in the horizontal plane and

24




non-coherent point sources with certain directivity patterns in the vertical plane [87-
89]. The properties of the integral equation in this case are determined by the
displacement of the noise source and by the number of excited waveguide modes.
The kernel of the integral equation can be factored with respect to horizontal and
vertical coordinates. In some cases, the two-dimensional distribution of noise sources
can be reconstructed, for example, if the source does not have a spatial dependency
in its frequency spectrum [58].

2.6 PARTIALLY COHERENT ACOUSTIC TOMOGRAPHIC METHOD

There is an interesting aspect of transmission OAT associated with the
application of noise acoustic sources, natural or artificial, in the design of
tomographic observation systems [81, 82]. This then introduces a tomographic
concept, the Partially Coherent Tomographic Method, that is a hybrid of transmission
and emission tomographic methods. A statistical description is necessary for the
partially coherent (PC) method but, unlike the transmission method, this method can
be used without the special illuminating acoustic sources. Investigations on this
method are in their initial stages of development, but .indications are that the method
holds promise for new interesting possibilities for OAT.

Later chapters deal with each of these tomographic methods in more detail.
But to close this section, let us emphasis, once more, the very important principle for
the classification of tomographic schemes and, associated with them, the methods of
OAT. Following this classification, OAT methods dealing with weak ocean
inhomogeneities and causing only energy losses and time delays are referred to as
adiabatic methods. On the other hand, if strong inhomogeneities are present, new rays
or modes are created after the interaction with inhomogeneity, the OAT methods are
then called diffraction methods. Both diffraction and adiabatic methods can be based
on either ray or mode approaches.



Chapter 3:

ADIABATIC TRANSMISSION TOMOGRAPHY FOR GYRO-SCALE
OCEANIC INHOMOGENEITIES

3.1 INFLUENCE OF LARGE-SCALE OCEANIC‘INHOMOGENEITIES
ON SOUND PROPAGATION

Many experiments have proven that low-frequency sound can be registered at
many thousands of kilometers from the source because of its very low attenuation.
For example, the sound with a frequency of 50 Hz loses only 10 dB for propagation
distances of 10,000 km. Furthermore, the presence of the underwater sound channel
(USC) provides for a reduced loss from spreading. The Heard Island Feasibility Test,
executed by Munk and colleagues in January 1991, demonstrated one more time that
large-scale variability of the ocean, like large fronts, currents, and eddies of different
scales up to thousands of kilometers, can be investigated with low-frequency acoustic
tomographic systems [90, 91]. Figure 3.1 shows the calculated propagation path for

Figure 3.1. Calculated ray paths: 1-Heard
Island - Krylov Seamount; 2-Heard Island -
the end point of the drift of the Russian S

Research Vessel dkademik Nikolai Andreev. |7 o
(Adapted from [91].)

sound waves generated in the vicinity of Heard Island in the Indian Ocean and
received by a Russian listening station in the Atlantic Ocean located at a distance of
approximately 12,500 km [91]. The transmitter at Heard Island was a vertical array
of five sound sources with a source level of 220 dB re 1 puPa at 1 m. The propagation
time to this station was about 2 hr 20 min. Each acoustic sounding from the source
had a frequency of 57 Hz and duration of 1 hour. Figure 3.2 presents the acoustic
signal in the time domain (in a 1-Hz band) registered by the station during one hour,
in comparison with noise background measured for a silent radiating system. The
result of spectral analysis, with a 0.125-Hz resolution, for the signal received by
omnidirectional hydrophone at the depth of 800 m is shown in Fig. 3.3. It can be seen

0 2 40 66 E
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Figure 3.2. Amplitude fluctuations of Figure 3.3. Spectrum of received signal with
CW signal. (Adapted from [91]). a 0.125-Hz resolution. (Adapted from [91].)
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that the transmitted signal at the frequency of 57 Hz exceeds the surrounding noise
by approximately 15 dB. (We shall return to the Heard Island experiment later.)

Figure 3.4. Calculated ray paths: (a) without a warm lens; (b) with a warm
lens. (Adapted from [93].)

Another very important property of underwater sound propagation is its high
sensitivity to even weak inhomogeneities in the water. As an illustration, we consider
the influence of the underwater warm lens of Mediterranean Sea water observed
southward from the seamount, Great Meteor, in the Atlantic Ocean by the Russian
research ship Akademik Nikolay Andreev [92]. The diameter of the lens was
approximately 60 km. The maximum deviation of the sound speed at the center of the
lens (at the depth of ~1 km) from that of surrounding waters was 16 m/s, i.e., only
about one percent. Ray-propagation paths in the water without and with a lens are
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about one percent. Ray-propagation paths in the water without and with a lens are
presented in Fig. 3.4a and 3.4b, respectively [93]. The source was placed at the
periphery of the lens at a depth of 330 m. Sound-speed isolines are also shown in Fig.
3.4b. The lens is in the left part of the figure. We can see that a secondary USC, with
its axis at a depth of 600 m, was created by the presence of the lens.
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Figure 3.5. Diagram of the positions and 20 / 1 )
courses of the ships on paths R1 and R2: (1)- NAR)
Reseach Vessel Akademik loffe, (2) - Research < ¥ \
Vessel Akademik Sergey Vavilov. (Adapted 35 30 25 i 10 3
from [941.) W L ongitude

An important issue is that many similar lenses can be encountered when sound
waves propagate over long distances. Besides, stratification of the ocean can
significantly change over such distances. The question is whether or not the sound
field retains some regular structure that can be predicted in these conditions. This
question was partially answered by the Canary Basin Experiment, conducted by the
Russian team in 1989 [94]. The maximum distance for sound propagation between
two Russian research ships, Akademik Sergey Vavilov and Akademik Ioffe, was about
3500 km (path R2 in Fig. 3.5). The acoustic path was 3500 km long. A 137-Hz
source was placed at a depth of 1 km. The acoustic path crossed a "tongue" of
Mediterranean water with higher salinity (and, hence, higher sound speed), which
started at the distance of 2800 km. The isolines of sound speed in the vertical plane
of path R2 are shown in Fig. 3.6. Path R2 was extremely inhomogeneous, especially
in its northern part, where the influence of the Mediterranean waters was strong.
Probably, several weak internal lenses were crossed by the path, but their influence
could not be registered by the measurements at sparsely placed ship stations
(indicated by tick marks in Fig. 3.5).

Many vertical measurements of the sound field were taken along path R1. The
result revealed that regular families of rays with high-sound intensity existed along
the propagation path. These ray families have also been predicted by numerical
simulation. A high-intensity ray tube was formed by the rays leaving the source (at
the depth of 325 m) in the angular interval y=[-9°,-11°]. Ray families for the
horizontal distances from 900 km to 1200 km are shown in Fig. 3.7a. The regularity
of these rays can be explained by the fact that the cycle lengths, L, of the rays, as a
function of their emergence angle from the source, have extrema (i.e., 5L/8y=0) in this
interval of angles for all distances [94]. It can be shown that the same regular families
of rays exist also for path R2. Some of them are shown in Fig. 3.7b. Dotted lines
correspond to non-extremal rays.
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Figure 3.6. Isolines of the sound speed in the z, ki
vertical plane of path R2. (Adapted from 0.0‘@1 524—+—
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The existence of regular predictable structures in the sound field along very
long distances, even in a rather inhomogeneous ocean, gives us some hope for solving
the inverse problem, i.e., to determine some imporiant parameters of the ocean by
measuring parameters of the sound field.

~3.0 2 ; X 2 A : ' }
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Figure 3.7. Comparison of ray families emitted in the angular interval [-9°,-1 1°]
for: (a) path R1; (b) path R2. (Adapted from [94].)
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3.2 MATCHED FIELD METHODS

For simplicity, we censider the two-dimensional problem in the .z plane. Let
us suppose that we have sound-field experimenta! data of known amplitude and phase
at N points in this plane. The inverse problem consists of obtaining the most probable
distribution of the sound speed, ¢(r,2), in this plane by processing the data. The first
step in solving this problem is to parameterize the field, c(z,2), i.e., to describe it, most
precisely, by a minimal set of parameters, and then to determine these parameters
using an appropriate set of experimental acoustic data.

A common procedure to determine the field involves the use of so-called
Empirical Orthegonal Functions (EOFs). As an example, let us consider EOFs for
the Norwegian Sea Experiment [4, 57]. The distance between radiating and receiving
ships was 105 km. The receiving ship had a 560-m vertical array with 29
hydrophones. The depth of the water column was about 1500 m. A monochromatic
signal of 105 Hz was transmitted in the experiment. The vertical profile of the sound
speed, c¢(z), was measured at the source and receiver locations, and also at three
additional points between them. It appeared that c(z) at each point, r, can be
satisfactorily described with only two EOFs. Thus, analyzing the sound field at all
hydrophones of the vertical array and solving the inverse problem, we should
determine six amplitudes, ¢ = ‘g )}, j=1,...6, of the two EOFs at each of the three points

between the source and receiver. Linear interpolation may then be used between all
peints. The inverse problem may be solved by a minimization of the function

29 2
Fg)=1- Epi(E)pi(T)* (3.1
) izl

with respect to the vector 4. Here p{ is the normalized complex sound pressure

measured by the ith hydrophone, and p{” is the sound pressure calculated numerically

for the fixed vector 4. The adiabatic approximation (i.e., non-interacting modes) was
used in the calculations. Isolines of the measured (dotted lines) and the reconstructed
(solid lines) field, ¢(r.z), are shown in Fig. 3.8. Coincidence is satisfactory.

z, km

0.4

Figure 3.8. Isolines of the experimentally
measured (dotted lines) and tomographically
reconstructed (solid lines) sound-speed
profiles for the Norwcgian Sea Experiment.
(Adapted from [57].)
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~ The minimization procedure may be also applied to the function

2

N
F@=1-|% an(E’a,fT’*' (3.2)
n=1

instead of the function in Eq. (3.1). Here a® and o are experimental (measured by
a vertical array) and calculated (for the given vector ¢) araplitudes of the nth mode,
respectively. Results appear to be practically the same.

3.3 OCEAN ACOUSTIC TOMOGRAPHY ON THE BASIS
OF TRAVEL-TIME MEASUREMENTS

The type of experiment described above can be used effectively in the shallow
water, when arrivals of sound pulses propagating along rays with different numbers
of bottom reflections can not be resolved. The monochromatic source and mode
approach appear to be rational in this case. A method of solution of the inverse
problem in the deep ocean was suggested by Munk and Wunsch and is based on the
ray approximation. This method was originally named the “ocean acoustic

-5.04
1500 15400
c,n/s

Figure 3.9. Ray propagation paths for the typical deep-water, sound-speed profile.
A source is located at the axis of underwater sound channel. (Adapted from [94].)

tomography method” [16]. In Fig. 3.9b the typical ray pattern is shown for a typical
deep-ocean, sound-speed profile (Fig. 3.9a) with the source, $, and receiver, R,
placed near the axis of the USC. Numerous rays reach the receiver, and the travel
times of the sound pulses along the different rays contain the informaticn which we
need. Considering the problem in two-dimensions again, the travel time along a
particular ray, i, can be written as
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di

{ l( clr,z)’ (3.3)
where /; is the path taken by the ray.

Let us assume that ¢(r,2) =c(2)+5c(r,2), where ¢(z) is some known (climatic or
measured at the source or receiver location) sound-speed profile, and 3¢(=) determines
sound-speed variations. To find 8c(r,2) using the measured travel times for different
rays is a task of tomographic reconstruction. Let &, be the variation of 7, due to the

variations 3¢ along path /. If &c is small enough, we obtain from Eq. (3.3) to good
precision:

B AP sl
at,_lfa[;)dl 1[;8(d1)~lfsk?)dl. | (34

The second term was dropped since it is equal to zero by Fermat’s principle. Hence,
each ray gives us, theoretically, one equation for determination of &c(rz).
Unfortunately, the arrivals of ray pulses propagating near the USC-axis are not
resolvable in time and, therefore, can not be used. In typical mid-Atlantic conditions,
using good data processing techniques and rational averaging over time, one needs
only 13-16 rays. Each of these rays yields Eq. (3.4) relating &, to c along path /.

When we wish to apply the tomographic procedure to a whole ocean region
(three-dimensional case), we have to rearrange the measurement scheme. If we have
N points where sources and {or) receivers are placed, we have N(¥-1)/2 ray paths, and
the number of equations for determination of the parameters of the medium increases
significantly. Of course, the three-dimensional function 8c(xy,z), which we seek,
must be parameterized in socme way. Usually, however, the number of equation
appears to be less than the number of parameters describing the medium, so that some
kind of a priori information about the function, 8¢ (x,y,c), should be taken intc account
for these cases (see the example of numerical modcling discussed below).

Acoustic tomography of ocean currents can also be based on travel-time
measurements. In a moving range-independent ocean we have for the propagation
time along the jth ray between points 4 and B

. dl
s _p_dl 3.5)
5 f eV (3.5)
!

for a transmission in the positive(+)/negative(-) r-direction, respectively. A

transceiver (source and receiver) is located at both the starting point and end point; u(?)
is the flow-velocity component along the ray in the positive r-direction. The
integration paths, /7, are along the trajectories of the ith ray and are generally
functions of ¢(z) and »(z). It can be shown that the path geometry is reciprocal to
order wc«l, hence /'=/=l,. The half sum and difference of reciprocal travel times are

defined by
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1,48 Bay_ 1.+ - _ c
s, =+, )__Z_(t‘. +, )—[ dl, . (3.6)

2 c*-u?

1,48 B4, 1.+ - u
d=5 (", )=o) = lf cz—uzdl' (3.7
i

Usually, ¢ and u are of order 1000 and 0.1 m/s, respectively, so 1’ can be neglected
in the denominator. The difference travel time is a small fraction of the one-way
travel time. Therefore, ¢ is well determined by one-way travel times in either
direction from the ray approximation.

In tomographic algorithms we are often more interested in the travel-time
perturbation, 9, from a previous measurement, or from a value inferred for the
climatic ocean mean. Linearization of Eq. (3.6) and (3.7) yields

1 dc u :
s,.-f;dl, 8s,=- ?dl, d,.——f;dl. (3.3)
]l ]i Il

The vatue 8¢ is of order 10 m/s and is still large compared with u. As before the
variations, 8c, are well determined by one-way travel time in either direction.
However, measurements of u require the use of travel-time difference.. We can
conclude that by making transmissions in opposite directions along a propagation
path, the effects from sound-speed variations and water-flow velocities can be
separated.

The first full-scale tomographic experiment was accomplished in 1981 for a
two-month period in a 300-km square at 26°N, 70° W in the North Atlantic [95]. The
basic design consisted of four sources on the western side of the square and four
receivers on the east. A fifth receiver was placed near the northern boundary. All
instruments were placed at a nominal depth of 2000 m. The source transmitted a
phase-coded, linear-maximal-shift-register sequence on a 224-Hz carrier. During the
experiment, three CTDs (conductivity, temperature, depth) and two AXBTs (aircraft-
deployed expandable bathythermograph) surveys were carried out. The primary goal
of the experiment was to evaluate the effectiveness of purely acoustic measurements
in mapping a three-dimensional ocean volume as a function of time. Conventionally
obtained environmental data were intended to be used as a reference ocean model, and
also to provide a test and measure of the accuracy of the applied tomographic
techniques. Unexpectedly, it was found that the environmental data contain
information independent of the acoustical observations (and vice-versa). Thus, the
best possible reconstruction of the three-dimensional ocean can be made by
combining all the data— acoustic plus environmental — in the inversion procedure.

The difficulties in the experiment were numerous. To resolve as many airivals
reaching the receiver by different paths as possible, a broadband acoustic signal (with
a 5.4-Hz frequency band and 31.25-ms sampling interval) was generated. Travel-time
fluctuations caused by the meso-scale ocean variability were masked by other sources
of travel-time variance. Mooring motion and clock error were explicitly-accounted
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for and corrected to a large extent in the inversion procedure. Other travel-time
perturbations (for example, fluctuations due to internal waves) are lumped together
as random errors. Finally, the signal bandwidth, the sampling rate, the environmental
signal-to-noise ratio, and ocean physical effects allowed resolution of ray-multipath
arrivals with delay time between two sequential ones longer than 90 ms.

Results of this experiment were rather encouraging, but also highlighted some
important problems, which were taken into account in future experiments. The
tomographic maps described correctly the main features of meso-scale variability of
the ocean. The maps showed that at the beginning of the experiment there was a
region of low sound speed ( with a 10-m/s sound-speed decrease corresponding to a
-2.0° C temperature drop) centered within the box. As time passed, this weak eddy
moved to the West. The southeast region was initially warmer, replaced by colder
water toward the end of the experiment. This was a region of high expected mapping
error. Examination of the environmental surveys showed the same features that were
seen in the tomography. The tomographic data inversion produced usetul spatially
averaged profile maps. Although the array configuration was adequate for producing
maps of meso-scale features, the poor travel-time resolution (because of the limited
bandwidth) caused large errors that prevented going much beyond pattern recognition.
Meso-scale variations were mapped with an average accuracy of about 1.5-2 m/s
(about 0.3-0.4°C).

The Reciprocal Transmission Experiment in 1983 [96] overcame the principal
shortcoming of the limited bandwidth of the 1981 acoustic sources. Sources with
increased bandwidth significantly improved the resolution of rays and the accuracy
of the travel-time measurements. This improved accuracy allowed for a more
stringent measurement of differential travel time to obtain absolute current velocity
(rather than sound speed only). The two-way, reciprocal-sound-transmission method
was used to determine the current velocity, u(z). The experiment took place west of
Bermuda during August and September.

Acoustic transceivers were placed near the USC-axis (1300 m) with a distance
between them of 300 km. They sent and received signals every two hours for 21 days.
Travel times along 13 rays in each direction were used for the reconstruction. Ray
paths in opposite directions were found to be nearly reciprocal, and effects due to
internal waves and mean currents were small. Travel-time sums were inverted to
obtain sound speed at two-day intervals, and differential travel times were inverted
to obtain absolute current velocity (see Eq. (3.8)). The ocean model for currents
consisted of the first three quasi-geostrophic modes with the range dependence given
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Figure 3.10. Range-averaged current velocity -0.02 T~ . .
mode amplitudes versus time. Error bars are 215 220 225 230 235
shown. (Adapted from [94].) . Year Day of 1983
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by sines. The three range-averaged mode amplitudes versus time are plotted in Fig,
3.10 with error bars shown. One can see that the second baroclinic mode ampiitude
does not differ significantly from zero, although it is responsible for the small
perturbations in the profiles near the surface. The first baroclinic mode amplitude
decreases by a factor of two over the course of the experiment. This variation is
associated with the change in separation of the differential travel-time data between
the shallow turning rays and the deep turning rays. The error in the first baroclinic-
mode amplitude is large because it is determined primarily by the rather uncertain
travel times associated with the shallow turnirg rays. The barotropic mode (mode 0)
amplitude increases by a factor of three. The error for the range-averaged barotropic
mode is smaller than the error on the first baroclinic mode amplitude because data
from all the rays contribute. The resulis agrees favorably with XBT and AXBT
surveys.

It is important to emphasis that reconstruction of ocean currents by solving Eq.
(3.8) can be done if ray paths in opposite directions are very nearly reciprocal, i.e., ray
tube separation in space is small compared to the scale of medium inhomogeneities.
Tomographic reconstruction of flow velocity in powerful currents, where the last
condition may not be true, was considered by Godin, et al. [97]. An interesting non-
perturbative approach to the problem was discussed there.

The experiments on ocean acoustic tomography, described above, have shown
promising perspective for measuring small temperature variations over long distances
and for measuring ocean currents in large regions. Appealing applications are
possible with the use of a three or more transceiver arrays. With a three-transceiver
artay, the areal-averaged relative vorticity can be measured [98]. With five or more
transceivers, one can directly measure not only the gradients of the relative vorticity
but also its Laplacian and thus attempt to balance the potential-vorticity equation [99].

3.4 NUMERICAL SIMULATION IN OCEAN ACOUSTIC TOMOGRAPHY

Numerical simulation for OAT is very useful in many respects, particularly, in
the evaluation of: <

a) The limits of applicability of linear theory of reconstruction, when terms
of order #° can be neglected in Eqgs. (3.8); and

b) The stability and precision of the reconstruction procedure when some
parameters (for example, experimental data used for reconstruction) are
known with restricted precision or may fluctuate. .

Several numerical techniques for tomographic reconstruction were developed
at the Shirshov Institute of Oceanology [100, 101]. A warm eddy observed in the
southwestern part of the Sargasso Sea was studied with one of the techniques. The
diameter of the eddy was 200 km. The sound speed at its center (at a depth 500 m)
was 6 m/s higher than in the surrounding medium. Different positions of the eddy
between the sound source and receiver (each at a depth of 1000 m) were considered,
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and each time its center was supposed to lie along the path between the source and the
receiver, which were 200 km apart. A parameterization of the medium was
accomplished by introducing a grid in both the vertical and horizontal directions, with
linear interpolation inside each triangular cell. Only two-dimensional situations,
when the source and receiver were in the same vertical plane, were been considered.
Travel times from the source to the receiver along 14 rays were used as the
projections for tomographic reconstruction. The number of unknown parameters in
the inversion procedure was greater than the number of equations. Nevertheless, it
appeared that, using Tikhonov's regularization method [102] and quite natural a priori
information, rather satisfactory reconstruction of the medium can be achieved. An
rms error of reconstruction was 0.5-0.7 m/s depending on the position of the center
of the eddy. Solid lines in Fig. 3.11 are the initial sound-speed isolines, whereas the
dotted ones are reconstructed values of the sound speed for the case when the center
of the eddy was exactly at the middle between the source and the receiver (the error
of reconstruction was minimal in this case). The inversion procedure appeared to be
stable when the random error in travel-time measurements did not exceed 15 ms.

z, km

Figure 3.11. The warm eddy reconstruction: solid
lines - isolines of the measured sound speed
profile; dotted lines - isolines of the reconstructed
sound speed profile (Adapted from [100]).

t, sec
134.4

134.0¢-

133.6¢--

Figure 3.12. Calculated ray travel times versus a
location of the Gulf Stream Center: solid lines - (133 24-. ;
exact ray approach; dotted lines - linearized 200 105 T T TN
theory (Adapted from [1001). 1, km

The linear inversion used in the example fails when the variations, 8c(r,z), from
the mean sound speed, ¢(z), exceeds approximately 10 m/s. This is a case in the Gulf
Stream, for example, where sound-speed fluctuations can be as large as 50 m/s. The
dependencies of travel times, ¢, for three rays on the position of the center of the Gulf
Stream ring, at r, lying in the plane connecting the source and the receiver, are shown
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in Fig. 3.12. The scurce and receiver were 200 km apart and the sound speed -
variation, 3¢, was equal to 35 m/s. Solid lines corresponds to calculations in
accordance with Eq. (3.3). Dotted lines are calculations using the linearized Eq. (3.8)
with z=0. We can see that the linearized approach produces errors in travel time up
to 50% for some cases. Tomographic reconstruction in such cases becomes much
more complex. »

3.5 ACOUSTIC MONITORING OF GLOBAL CLIMATE CHANGE

It is well known that increasing the concentration of CO,, CH, and some other
gases in the atmosphere causes a rise in the average global temperature of the Earth.
This effect, called the "greenhouse effect," is very important to the future of the
mankind. The problem of monitoring the effects of greenhouse gases in the
atmosphere at some representative places on Earth has been practically solved. But,
for many reasons, calculating the atmospheric temperature trend from these data is
rather difficult. A prediction of the trend even from very long series of temperature
measurements in the atmosphere is not very reliable due to very the large natural
variability of the atmosphere.

\ It is also known that a significant part of the heat in the atmosphere and solar

energy are directly absorbed by the ocean. Thus, direct measurements of the
temperature trends in the World Ocean have become an important aspe-t of the global
climate change problem. A significant part of proposed schemes for global climate
monitoring includes OAT. The idea of acoustic monitoring of the global climate
changes was suggested by Munk and Forbes [103] in 1989. The proposal gives a
preference to the analysis of the temperature averaged over long planetary-scale
distances in the World Ocean rather than the temperature ineasurements at some given
points. Travel times of acoustic signals are directly related to such an-averaged
temperature.

The technique, proposed by Munk and Forbes, has two main advantages in
comparison with atmospheric measurements. First, the natural "noise" from natural
variability of the ocean is much less than that of the atmosphere, due to a larger
thermal inertia of the water mass. Second, averaging can be achieved not only in the
temporal domain but also in the spatial domain. Existing estimates have shown a
warming of the atmosphere by 0.5°C during last 130 years. Appropriate estimates of
the warming of the ocean during recent years have indicated that a change in the
sound travel time has been typically 0.25 s per year over a 15,000 km distance.
Simultaneously, however, meso-scale variability in the ocean causes a one-order
higher fluctuations of the travel time. Calculations have alsc demonstrated that an
acoustic experiment of 10-year duration would allow for the establishment of the
general temperature trend. . :

Working Group 96 of the Russian Scientific Committee on Ocean Research has
concentrated its efforts on a wide program of ocean acoustic monitoring. The
scientific communities of many countries have declared their intentions to participate
in this project. Success of the Heard Island Feasibility Experiment [104, 105] was
very encouraging in establishing a proposed course of action. The general picture of

37




acoustic paths from Heard Island to the Indian, Atlantic, and Pacific Oceans are
presented in Fig. 3.13. From this illustration one can get an impression about the
distances that are present in the problems as they relate to the global monitoring of the
ocean,
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Figure 3.13. Calculated propagation paths from Heard Island to receivers
at Ascension (A), Bermuda (B), Christmas (C), Oregon (D), and
California (E). (Adapted from [91].)
Some principal problems must be solved before the project can establish a real
_start. These problems can be separated into three groups. The first group is related
to the right choice of sound transmitter and receiver locations. Ideally, one would like
to have a system with gyro-scale resolution and meso-scale averaging [104]. Many
acoustic paths must be present and analyzed in experiments. Among them, such
exotic ones as across the Arctic Ocean (mostly under the ice cover) and from the
Russian port at Viadivostok across the Pacific have been discussed.

The second group of the problems requires the development of low-frequency
(50-70 Hz) arrays of transmitters and receivers that could operate with high efficiency
and 10-years reliability at depths of about 1 km. Such arrays are needed to achieve
the necessary acoustic efficiency of the system, as well as to insonify only the near-
axis part of the USC. In this case, ocean marmals, inhabiting the upper several
‘hundred meters of the ocean, will not be affected by acoustic signals periodically
generated during the many years.

The third important problem is the development of robust algorithms for ray
identification (in temporal and angular domains) after their propagation along many

 thousand-kilometers paths across the rather unstable ocean. The principal intellectual
challenge in the algorithm design is the separation of the measured combined
greenhouse and ambient-climate effects. :

3.6 TOMOGRAPHIC EXPERIMENTS WITH VERTICAL ARRAYS
IN THE DEEP OCEAN :

The sound field in a layered or nearly layered medium far eﬁough from the

source can be represented as a finite sum of propagating normal modes. The modal
description is especially convenient for low frequencies when the number of
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propagating modes is small. Therefore, measured modal structure at the receiver
location will contain the information about the propagation path characteristics and
the source location.

To develop tomographic methods, based on the modal approach, experimental
measurements of complex modal amplitudes, spanning most of the water column
down to the bottom, are needed. Vertical linear arrays are suitable for this purpose.
Presently, only a few publications concerning measurements of this sort are available.
In particular, such experiments were carried out in shallow water {106, 107] and in
the Arctic [108] and Pacific Oceans [109]. One of the main difficulties of these
experiments consists of controlling, with high accuracy, the vertical configuration of
the array. If this problem is solved, then we arrive at the following linear set of
equations for CW signals: ’

M : : _
p,fE)(rn,z" = Zcmtpm(zn)exp(ixmr"), n=1,2,..N, _ : (.9

m=l

where N is a total number of receiving hydrophones, p is the experimentally

measured signal by the nth hydrophone, the point (7,.z,) defines the hydrophone
herizontal and vertical coordinates (in the plane of sound propagation), ¢,(2) is the
vertical eigenfunction of the mth mode, «,, is the horizontal modal wavenumber, and
¢,, is the complex excitation coefficient of the mth mode depending on the source

location. The solution of this set of equations to extract the ocean parameters has
been discussed in detail in Ref. [4].

As mentioned earlier, Norwegian Sea Experiment in 1990 was performed in
the using a 560-m vertical receiving array with 29 equally spaced hydrophones [4, 57,
110]. The array was deployed from the ship, and its spatial configuration was
monitored by a special acoustic system. The 105-Hz transmitter of the CW-signal
was set at a depth of 550 m and at a horizontal distance of 105.5 km from the
receiving array. The medium between the source and the receiving array was
inhomogeneous. Figure 3.14 represents isolines of sound speed and the bottom
bathymetry along the acoustic path.

Figure 3.14. Sound-speed isolines and bathymetry for
. the 1990 Norwegian Sea Experiment. (Adapted from
[571)

80 60 40 20 1 km
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Mode amplitudes were calculated according to the procedure described in
[108]. Calculated (from the measured data but arbitrarily scaled) modal intensities,
|, |2, for the first eleven modes (the theoretically predicted number of propagating
modes) are shown in Fig. 3.15 by solid vertical lines. The dashed lines correspond
to mode intensities theoretically calculated from Adiabatic Modal Theory (AMT).

Mode Intensity (arb.)

Figure 3.15. The first cleven mode -
intensities, calculated from measured data | - :
(solid lines) and from Adiabatic Modal 1B

Theory (dashed lines) for the 1990 A O O O OO
Norwegian Sea Experiment. (Adapted 0 2 4 6 & 10 12
from [4].) ' Mode Number

For given complex modal amplitudes, c,,, the position of the source emitting

the sound wave can be reconstructed numerically. According to AMT, the modes
generated by a source at the point (r,z) give the following pressure field at the

receiver location (r,z):
AT S
i )(r",:" = Ecmum(rn,:n)exp(if'" K,dr), n=12,.N. (3.10)
- m=1 s
Thus, the angle, o, between two M-dimensional complex vectors, a=[a,],

m

: r
a, = ¢, (= exp(ix,r,) and b=[b,], b, =c,(r.z,)exp f x dr | depends on the assumed

coordinates of the source:

M [ M Yy -1
C(r, .z, )=cos[a(r, z,)] =( Y, amb,;] t Y la,|? ( Y Ibmlz) . (.11
\ ,

m=1 m=1 m=1

The dashed lines in Fig. 3.16 demonstrate the parametric dependence of the function
C(r,,z,) on the source horizontal location: '

Cofr,) = MAXC(r,z) |  @12)
One can see that C,(r) has maximum at ;= 109 km, which differs by 3.5 km from

the real position of the source. This discrepancy appears to be due to a lack of
coruplete information on the propagation conditions. The sound-speed profiles (SSP)
were measured at only five points: the two terminus (& and S) and three additional
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points P, P,, P, (see Fig. 3.14). Due to drift, these points appeared to have moved
about 6 km away from the actual acoustic path. Based on the measured acoustic data,
a reconstruction of the SSP along the path can be attempted by using the method
called “Matched Field Tomography” as a step prior to the source-localization
procedure. In the experiment, the appropriate procedures were as follows.
Proceeding from five available SSPs, one can calculate the average profile, <c(z)>.
Deviations at five locations in range, Ac,(2)=c,(z)~<c(z)>, k=1,2...,5, were approximated
by EOFs. Only two of EOFs were found to be necessary to provide a good
approximation for all Ac,(z). The SSP between the points R, P, P, P, S were
interpolated linearly. Hence, a certain vector, ¢, with 6 (=2x3) components described
completely the sound-speed field along the path. Then, for the given vector, g4, the
signal at the nth hydrophone was calculated theoretically by AMT. It is important to
mention that the quantities p cannot generally be considered as linearly dependent

n

on q for practically all possible variations of ¢. The tomographic procedure consisted
of finding the vector ¢ which ensures maximum of the following function:

~1/2

N -2l N
( Z% |p:”|2] ( Zl lp:"’P] (3.13)

K(q)=

S @) @
hy A
n=1

(cf. Eq. 3.2). The gradient descent method with a starting point of ¢=0
(corresponding to a layered medium with the average SSP <c(z)>) can be used to
maximize the function X(g).

Deviations of the measured SSP from the average one (dashed lines) and
deviations of numerically reconstructed SSP, corresponding to the particular vector
¢, from the average one (solid lines) are represented in Fig. 3.17 for three points,
P,, P,, P;, where environmental measurements were carried out. One can see that the

reconstructed profiles are close enough to the measured ones with a deviation of the
order of 1 m/s.
A new estimate of the source position was then accomplished by using the
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. estimated to be 106 km from the receiving array. This estimate deviated by only 0.5
km from the source actual position.

z, km
-0.4 e - P31
P RCANS A
0.6 it
T N |
o -0.8 fJ: .
Figure 3.17. Deviations of the measured sound 3
speed profiles from the average ones (dashed | -1.0 4
lines) and deviations of numerically 12
reconstructed sound speed profiles from the ’ J
average ones at three horizontal locations. 0 5 10 15 20
(Adapted from [57].) AC(z), m/s

3.7 WEAKLY DIVERGENT BUNDLES OF RAYS AND THEIR
POSSIBLE USE IN OCEAN ACOUSTIC TOMOGRAPHY

It has been observed in recent experiments on long-range (up to 3500 km)
sound propagation over certain paths that the sound field can form very stable shadow
and convergence zones. This fact means that the distant sound energy is not
inevitably spread over all depths and decays with the distance according to the
average decay law [8], but concentrates along some bundles of rays [94, 111]. It was
shown that the existence of so-called “Weakly Divergent Bundles” (WDBs) of rays
is a reason for such concentrations. The conditions for the formation and the
propagation of WDBs in a range-dependent ocean have been investigated and
published in [112, 113]. Rays within a bundle leave the source with grazing angles,
%, corresponding to extrema of the function L(y), the length of a ray cycle with respect
to its emergence angle. It appears that the propagation time, ¢(x), along rays in a
WDB concentrates near some average value. This is an important characteristic of
acoustic propagation for OAT. This property of a WDB follows directly from the
following relation [114]:

o _13L (3.14)

where v=c(z,)=c(z)/cosy(z) is the phase velocity in the r-direction for the quasi-plane
wave corresponding to a given ray, whereas -, is the vertical coordinate at the turning
point of this ray. Therefore, functions ¢(v) and L(v) have extrema at the same v, i.e.,
for the same angle 3. Hence, propagation times along the different rays in a WDB are
also close to each other.

One may anticipate that WDBs can be observed not only in range independent
environments, but also under adiabatic conditions (i.e., a slowly changing waveguide).
Experiments have shown that WDBs have been observed at great distances (up to
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3500 km) even under the conditions of considerable change of the sound channel
along the propagation path [94]. An additional confirmation of these results has been
obtained also by numerical simulation. It appears that, although the cycle length,
L(x,r), changes considerably with the distance, some extrema of the function preserve
their extremal behavior over a long range. This fact ensures that the ray tube
associated with an extremal ray expands comparatively slowly with increasing
distance, so the sound intensity remains high along such a tube.

The =(x;r)-diagram, which specifies the depth, z, at a distance, r, for the ray

that leaves the source at the grazing angle, %, can be used to investigate the average
energy parameters of a WDB. For example, if one distributes the total energy of the
bundle uniformly over its cross-section for a horizontally stratified medium, one
obtains for the squared amplitude (sound intensity) of the bundle:

e AL rcosy'dy’

(3.15)

8z cosy”

where 47 is the sound intensity generated by the same source at a distance, r, in the
case of homogeneous medium, y’ and %" are grazing angles of the same characteristic
ray of the bundle (e.g., with the smallest emergence angle) at the source location and
at the distance r, respectively, &/ is the angular width of the bundle leaving the

source, and '

dz=| Lz} s + 8y + | % [sin®y"dy |
X

is the depth difference between the bound bundle of rays, which determine the wave
front at the receiving point.

The amplitude of a single ray can be described also by Eq. (3.15), if we replace
the bundle cross section, §S=2nrcosy’-5z, by the cross section of an infinitely narrow
ray tube dS=2mrcosy”-|8z/0y/|dy’. We can introduce the average (over the bundle)

derivative (z')=AZ/Ay, where AZ= f |z%P|dy is the sum of quantities

max{z(;) -minlz(;;7) over all monotonic parts of the z(x;7)-diagram. The estimated
average-squared amplitude of the ray is

A2 rcosy' A
g2 20T X : (3.16)
AZ cosy”

which is also the sound intensity measured by a directional antenna that resolves the
different families of rays in the bundles. (More than one family can be present in the
bundle due to the existence of caustics, for example). The ratio 4/4, is equal

approximately to the number of rays of such families.
Let us consider further the previously mentioned Canary Basin Experiment in
the context of WDBs (see Figs. 3.5-3.7) [94]. The “tongue” of higher salinity water
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caused a formation of a two-channel propagation structure. A WDB (in the angular
interval y=[-2.7°,2.6°]) existing at lesser distances, experienced considerable
structural change and split into three bundles with X’s in the intervals: I - [-2.7°,-2°],
11 - [-1.6°,1.4°], and III - [2°,2.6°]. Bundle II was trapped by a deep, strong channel
with its axis at the depth of 1500 m (see Fig. 3.7). This bundle preserved its weak
divergency. Bundles I and III, trapped by the upper channel with its axis at 500 m,
experienced stronger disturbances. Their energies were smeared over practically the
whole channel. This can be seen in Fig. 3.18a, where boundaries minlz()} and
maxiz()} are plotted for bundle II (solid lines) and for bundle I (dashed lines).
Average ray amplitudes versus distance along the same bundles, calculated from Eq.
(3.16), are shown in Fig. 3.18b by the same kind of curves as in Fig. 3.18a.
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Figure 3.18. (a) - Two WDBs for the experiment in the Canary Basin
Experiment; (b) - average ray amplitudes versus distance along the same
WDB (see Fig. 3.7).

The amplitudes in bundle I are strongly oscillating because of pulsations in the
bundle cross-section. (This, however, is not clearly visible in Fig. 3.18b due to the
great difference between horizontal and vertical scales.) Sound amplitudes in this
bundle, formed by all other normally divergent rays (dotted line), are 15 dB above the
background. Bundle I is more divergent than bundle II. Its ray amplitudes are not
higher than 6 dB above the background, so it can not be classified as a WDB.

Horizontal inhomogeneity of the sound channel was strong in a Norwegian Sea
Experiment conducted in 1990 [4, 112]. The greatest distance in the experiment was
890 km. The vertical SSP, ¢(z), at different distances and the bottom bathymetry are
presented in Fig. 3.19a. A two-axis channel existed at mid-range. However, even in
this strongly range-dependent conditions, some bundles preserve their structures.
There are six WDBs corresponding to the following angular intervals: I - [-10°,-7.6°],
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II-[-7.6°-5.9°], I - [-3.2°,-1.7°], IV - [1.7°,3.1°], V - [6.4°,7.9°], and VI - [6.4°,7.9°].
In Fig. 3.19b boundaries of WDB IV, which retains its structure up to the maximum
distance, are shown by solid lines. Dashed lines correspond to bundie 1, which is
formed by rays leaving the source at steeper emergence angles. This bundle is
destroyed at distances about r =630 kin due to the interaction with the bottom.
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Figure 3.19. The 1990 Norwegian Sea Experiment; (a) ~ the
bathymetry and the sound speed profiles at different distances; (b) - two
WDBSs; (c) - average ray amplitudes versus distance along the same
WDB. (Adapted from [112].)

The average sound amplitudes, 4,, in these bundles are shown in Fig. 3.19¢ by

the same kind of curves. The amplitude in bundle I drops significantly at distances
near 639 km and remains close to background level. The amplitude of bundle VI, not
shown in Fig. 3.19¢, reveals the same behavior. Also not shown in Fig. 3.19c,
bundles 1I and III were considerably affected by horizontal inhomogeneity of the
sound speed and were slightly above background. In contrast to this, the amplitude
in bundle 1V, although strongly oscillating, was considerably higher than background
level (by 17 dB at some distances). The average amplitude of bundle V has analogous
behavior (also not shown), and only at distances greater than 800 km did it
disintegrate due to interaction with the bottom.

In Fig. 3.20a, the normalized amplitude as a functicn of depth, averaged over
100 m in depth, is plotted on a linear scale as a solid line at a distance of 571 km. The
same average amplitude at the distance of 778 km is shown in Fig. 3.20b.
Considerable variations in amplitude versus depth indicate that the WDBs play an
important role. Dotted lines in the figures represent numerically calculated amplitude
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taking into account all rays leaving the source in the angular interval [-11°,11°]. The
dashed curves correspond to numerical calculations, taking into account only rays
forming WDBs — all six at 571 km and four of those not destroyed at 778 km.
Behavior of the numerically simulated bundles at 778 km is very similar to that of
experimental amplitudes, which means that WDBs play the main role in forming the
sound field.
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Figure 3.20. The sound field amplitude as a function of depth at a distance of: (a) -
571 km and (b) - 778 km for the 1990 Norwegian Sea Experiment. Solid lines
correspond to the experimental data; dotted lines correspond to numerically calculated
amplitude, taking into account all rays leaving the source in the angular interval
[-11°,11°]; dashed lines correspond to numerically calculated amplitude, taking into
account only rays forming the WDB. (Adapted from {112].)

Weakly divergent bundles may have considerable practical importance. They
can be used for effective long-range underwater sound communication, for example.
In the presence of strongly pronounced inhomogeneities of the sound speed in both
horizontal and vertical directions, models using the WDB-approach increase the
effectiveness of the matched field method in solving inverse problems. The stability
of a WDB in the presence of different kinds of inhomogeneities in the ocean is very
important for Munk-Wunsch Ray Tomography also. Particularty, bundles can be used
as reference rays in "dynamic" tomography, which analyzes differences of arrival
times of different rays instead of arrival times itself. For acoustic thermometry of the
ocean it is also important to use rays and bundles that are stable under the conditions
of strong variability of the ocean.

It should be noted that, when working with WDRs, one must use hydrophone
arrays or moving single receivers. A single receiver at a fixed position will be
ineffective, because WDBs can change their positions when conditions for sound
propagation are chianging.

In conclusion, let us discuss the possibility of using WDBs in one of the
acoustic paths in the Arctic ( the Beaufort Sea - Spitsbergen) proposed for the ATOC
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(dcoustic Thermomerry of Ocean Climate) project [16, 17]. As range-averaged SSPs,
<¢(2)>, two typical profiles have been selected: a typical one before the Lomonosov
Ridge (solid line in Fig. 3.21a) and one after it (dashed line). Two WDBs are shown
in Fig. 3.21b. They leave the source, which is placed at the depth 300 m, in two
angular intervals: 1- [-7.8°,-7.6°] and Il - [7.4°,7.6°]. Average ray amplitudes versus
distance along the same bundles, calculated using Eq.(3.16), are shown in Fig. 3.21c
by the same kind of lines as in Fig. 3.21b. Lower turning points of these ray appear
to be deeper than the top of the Lomonosov Ridge (at a distance 1950 km in Fig.
3.21b). This fact influences the WDBs in some measurements, but does not disturb
their general structure. A standard WDB corresponding to x=0, not shown in Fig.
3.21, also exists. Such rays have short cycle lengths, and the bundle disintegrates
even at moderate distances. .
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Figure 3.21. (a) Representative sound-speed profiles in the Arctic before the
Lomonosov Ridge (solid line) and after the Lomonosov Ridge (dashed line); (b)
two WDBS; (c) average ray amplitudes versus distance along the same WDBs.
(Adapted from [115].)

The stability of a WDB appears to be very important for detecting small,
climatic changes of the average temperature of the Arctic Ocean (ATOC project). To
demonstrate this possibility, we have numerically determined the changes of WDB
propagation times and amplitudes under the influence of a small increment of
temperature AT(z). We assumed a lack of temperature variations at the surface (ice-
melting temperature). Maximum variation, 57=max{AT}, was introduced for the depth
z=h=30m. The form of temperature variation is given by, AT(z)=8T-exp(-|z-A|/H) for z>h
and H=5000.. Thatis, AT decreases slowly with increasing depth. Calculations were
made for different maximum values from the interval 0<§7<0.15°C. According to the
calculations, ray amplitudes in the WDBs at a maximum distance of 2900 km (for all
87) appear to be 10-14 dB higher than the background formed from the rays not
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belonging to the WDB. The depth of the central ray in the bundle varies between 300
m and 1300 m, and the vertical cross-section of the bundie changes from 40 m up to
600 m. The pair of the same kind of lines in Fig. 3.22a shows maximum, 1%/2(67)-,,

max

and minimum, t,fl';n")(ST)—to, delay times for both bundles versus 87, where travel time,
1,, corresponds to the slowest ray in the absence of temperature variations (AT=0).
The intervals, Ar¢DET)=1"D- (4D show the possible dispersions of the travel times

at the distance of 2900 km. The variations of the average amplitudes of these rays are
shown in Fig. 3.22b. Small Ar for the bundle in the angular interval [-7.8°,-7.6°]
(dotted line) at siall 87 are due to the additional focusing of the rays reflecting from
the front slope of the ridge. The considerable difference in Ar for boundary rays in
this bundle for 7>0.02°C is due to the bundle broadening as it reflects from the rear
slope of the ridge and from the plateau adjacent to it. This also causes a decrease of
approximately 5 dB in sound amplitude in the bundle (Fig. 3.22b).

Figure 3.22. The dependencies of parameters of

two WDBs (L,II) on temperature variations: (a) the
maximum and minimum bundle temporal-delay 08
variations; (b) the average bundle amplitude ; ;

variations. (Adapted from [115].) 0.00 0.0 010 3T, C

One additional important fact can be learned from Fig. 3.22a. The difference
in propagation times of different bundles, as well as for different rays in the same
bundle, is considerable (30 ms and more). Therefore, different bundles, and even
different rays within them, can be resolved in practice. An approximately linear
relation, A#/r= Ac/c, between decreasing of propagation time, Az, for either bundic and
increasing of sound speed, Ac, corresponding to the increase of 37, can be also seen
in Fig. 3.22a.

Investigations of the use of WDBs in acoustic tomography and thermometry,
especially for the Arctic region, have been presented in [115]. The following
problems were considered in that paper:

a) Wave interpretation of WDBs;




b) Frequency dependence of WDBs, inciuding the  weakening and
disappearance of WDBs with decreasing frequernicy;

¢) Estimation of minimum frequency, for which the effect of WDBs is

" ‘apparent (about 30 Hz for the Arctic conditions); and-

d) Problems of the experxmental use of WDBs in OAT and measurements of
Arctic Ocean warming,.

3.8 INTERFERENCE TOMOGRAPHY ALGORITHMS FOR SYNOPTIC
- INHOMOGENEITIES AND OCEAN BOTTOM RECONSTRUCTION

An interference algorithm for OAT has been proposed for the reconstruction
of the synoptic inhomogeneities of the sound speed by the analysis of perturbations
in the inter-mode-phase difference [59]." The inter-mode-phase difference is
determined by the measured spatial distribution of the interference structure of the
acoustic field. T he possibility of solving the phase problem for ocean conditions will

'be analyzed numerically for synoptic inhomogeneities. Also, an interference method
for determining the SSPs, the density, and the attenuation éoefﬁment in the bottom
by measuring the sound interference structure and usmg a priori evaluations of the

“bottom parameters will be dlscussed ‘

3.8.1 Interference Tomography for Syhoptic Inhomog"’eneities

Let us consider an 1rregular underwater wavegulde with a SSP that is slowly
* varying horizontally: c(r,2)=c,(z)+8¢c(r,z), where [3clec. At the point, (0,z,), we place an
hannon'ig' sound source with radiation power P,. A receiver is locadted at the point
(a,z,_}. Thé ‘SSPS' near the source and near the receiver aré equal and given by c,(z).
- However, due to inhom'ogeneﬁties, there are SSP variations given by 8c(r,7) in
between. We consider the bottom to be smooth, non-absorbing and homogeneous.
Considering synoptic horizontal scales, we can assume that the characteristic
scale of horizontal variations of the SSP is much greater than the mode interference
scale, so that the adlabatlc approximation can be used to describe the sound field.
Numerical estimates have shown that, for synoptic variations of the sound' speed,
perturbatxons in the inter-mode-phase difference, e, are small for nearby modes (n -
and m); that is, &, =[8Y,-8¥ 1, where 8, is a ‘perturbation of the nth mode phase,
associated w1th the inhomogeneities. In'the adiabatic approach, the phase of the nth
mode at the receiver location has the form: \Y (@)= f "dr’c (#',w). For normal modes,

significantly spaced in the modal spectrum, the pertulbatlom in the mter-mede phase
difference may be of the order or even greater than unity.
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Assuming that for all mode pairs |e, |«1, we obtain for the acoustic-field
intensity variation associated with synoptic inhomogeneities:

Maz z) = laz,z)Naz,z,) =

Pugh g O 0) 08I0, ),

a n=\ m=1 ' ,KnKm

where [(az,z,) is the intensity of the acoustic field at the receiver in the presence of -
inhomogeneities, /(a,-,.z,) is the intensity in the receiver without inhomogeneities, ¢,

5

, (3.17a)

and «_ are the vertical eigenfunction and horizontal wavenumber of the nth mode in

the unperturbed waveguide, N is the number of propagating modes. To formulate
directly the basis of interference OAT, we should relate the mode-phase perturbations
to the field of inhomogeneities [59]:

2
8, ()= -—:—" A R AN GEDE (3.17b) -

where S(r,2)=8¢(rz)/cl(z). Thus, Eq. (3.17a) can be inverted with respect to S(r,z) on
the basis of well-known algorithms utilizing a regularization method [102].

Calculations have been made for two characteristic types of the ocean
underwater waveguides: a deep-sea waveguide with a canonical SSP and a surface
duct waveguide with the linear profile of the sound speed. The parameters of the
unperturbed waveguide acoustic modes have been calculated by the mode program.
In the process of inodeling the phase problem, the influence of sea noises has been
taken into account. The accuracy of the reconstruction has been estimated by the
coefficient n:

’

UEA D B N (3.18) .
nm nm

where Ae,, is the difference between the true and the reconstructed values of ¢, .
For energetically weak eddies (i.e., |e,,|«1for all modal pairs), a satisfactory
reconstruction of ¢, (with an accuracy determined by 7n<0.14) in the surface duct

channel may be achieved by measuring a one-dimensional (horizontal or vertical)
interference structure.  For fa ‘deep-sea channel, the measurement of the
two-dimensional interference structure is obligatory. In the case of energetically
strong eddies (i.e., 8=15-30 m/s), spatial filtering (to single out large-scale
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interference structures for which |e, |«1) should be used. It is necessary to measure

the two-dimensional interference structure in both types of channels for a satisfactory
reconstruction of ¢,

Figure 3.23a illustrates the results of solving the phase problem in a deep-sea
channel. The calculation was made for a sound-speed variation of 8¢=15 m/s. In this
case the optimum reconstruction occurred for the modes with numbers in the interval
42<j<65. The results for the case of the surface-duct channel are given in Fig. 3.23b.
Here the optimum reconstruction was achieved in the interval 54<i<70. The variation
of the noise intensity has shown that a satisfactory reconstruction was observed for
the signal-to-noise ratio of the order or greater than 13 dB.
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Figure 3.23. Modal-phase perturbation reconstruction for: (a) a typical deep-sea
sound channel, (b) a linear sound speed profile with a surface duct. (Adapted from

{68])

Thus, by measuring the acoustic-field interference structure, one may determine
accurately enough (at least for a certain interval of mcde numbers) the inter-mode-
phase difference. The inter-mode-phase difference can then be related to synoptic

. perturbations of the SSP. :

3.8.2 Interference Tomography of the Ccean Bottom

Let us consider an ocean waveguide with discontinuities of the sound speed
and density at the water-bottom interface, z=H. The z -axis is directed downward. Let
the SSP be é=c(z)+8c(z) and the density be p=p(z)+3p(z). Here, c(z) and p(z) are a priori
evaluated sound speed and density. Sound propagation in a medium with attenuation
can be described by the following equation for the complex amplitude of sound
pressure:

pv ( Zﬁé) +.2.’; (1-2i§)5=08%r-r)8(z-2,), (3-19)
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where o is the signal angular frequency,=o(\+2p)/p ”Zay co(MZp)/pc2 is generally
related to the attenuation coeflicient for an isotropic elastic medium described by the
Lame constants A and B, Q=,/8mp,c,P, and P is the source power, p, and c, are the

density and sound speed near the source point, r,=(0,z,). The magnitude Jo/c is the

attenuation coefficient in a homogeneous medium, which describes dissipative
medium parameters, for example, attenuation in the bottom.

" A way of applying OAT methods for bottom-parameter reconstruction can be
described as follows. The formula, which relates the pressure-field intensity
perturbations to the variations of the bottom parameters, is used as a basis for
reconstruction of the SSP, density, and attenuation coefficient. An expression for the
pressure-ﬁeld mtensxty can be written by using the modal description (as was done
" in the previous section). The average medium parameters in -an area under

investigation or other a priori information can be used as a reference. The modal
-parameters (e.g., eigenvalues, eigenfunctions ) can then be expressed through the
bottom parameters by perturbation theory. The formula is then linearized for a short
path (the path for which variations of amplitude and phase of modes are small). This
linearization simplifies the formula.
Let us consider some results of numerical reconstruction of the sound
attenuation coefficient in a homogeneous bottom by measuring the sound intensity for
_ the case of random noise and unknown source power. Without sound-speed and
density variations, we can rewrite Eq. (3.17a) as

Al(a,z;oj =f-I=P f dENK (2 azz) +K;(:: Lazzol, o (3.20)
H

where

po & 4, Ca)a ) 12E)

K (z SAEI) = c - s
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I=1512p,co» 9,550 = 9,(2)9,(z), ¢, and «, are the nth modal eigenfunction and the
horizontal wavenumber in the waveguide with characteristics ¢(z) and p(z), and y=0
a=|r-ry|. '

Assuming y(z)=y=const and taking into account the noise intensity, we can
represent Eq. (3.20) as

lazzy) :§(1~(a,:,:0) +1.)-v,0\(a,z.2) -7,0,(a2.5), (3.21)

where the sound intensity, 7, in the reference (no inhomogeneities) waveguide and the
coefficients, Q,=P, f d-='K,, i=1,2, are calculated for the case of a source with fixed

power, P=P,, I is the noise intensity, §&=P,/P,, and P, is an unknown source power.
Instead of the value y, we have formally substituted the uncorrelated values v, and
7,. Numerical simulation of the reconstruction of y was carried out on the basis of
Eq. (3.21).

The following model has been used for numerical simulation. The_water-
column depth is 295 m, the sound speed in the water column is 1483 m/s, the bottom
sound speed is 1750 m/s, the source depth is 75 m, and the receiver depth is 55 m.
External noise intensity is introduced by random values, I , with a uniform

ns>
distribution in the interval [0,2( )] and dispersion { )*/3. Random values of noise
intensity are added to the values of [ at the measuring points. In the numerical
reconstruction we employed an integral-equation-solving program based on
Tikhonov's regularizing technique [102]. The horizontal range interval varies from
0.5 to 8 km.
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Figure 3.24. Reconstruction error dependence on: (a) - the attenuation coefficient in the
bottom half-space, (b) - the signal-to-noise ratio. (Adapted from [68].)

The dependencies of reconstruction error, n (n=|y-v,|/y, where v, is the

reconstructed value), on the attenuation coefficient, y, and the noise intensity,{
(g=10-1og(I A1 ))), where I _ is the maximum of the sound intensity) are shown in Figs.
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3.24a and 3.24b, respectively. Curves 1 and 2 describe the reconstruction of y, and
Y,, respectively. Numerical simulation has shown accurate restoration of the

attenuation coefficient for values of the signal-to-noise ratio equal to or larger than
10 dB for the case of unknown source power.

3.9 IDENTIFICATION OF RAY PULSES IN OCEAN ACOUSTIC
TOMOGRAPHY WITH A MOVING RECEIVER

The application of the tomographic scheme based on measuring travel-time
differences of the different rays has shown that ray-based reconstruction algorithms
may be generalized for moving sources and receivers. Some experimental results of
the pulse identification testing are discussed in this section.

An experiment was carried out in the western part of the Mediterranean Sea in
June - July 1994 [148]. The Russian scientific-research ship, dkademik Sergey
Vavilov, received acoustic signals from sources of the International Tomographic
Experiment (THETIS-2) by using two vertical acoustic arrays: The sources radiated
periodically coded signals (m-sequence [16]) on the carrier frequencies 250 Hz and
400 Hz. The coded sequence of the phase changes contained 511 samples. The
digital duration (a duration of the radiated pulse after matched filtering) was equal
1,=10 ms for 400 Hz and 1, =16 ms for 250 Hz. The source depths were =150 m

and z=170 m (near the sound channel axis). The working lengths of the vertical

arrays were 127.5 m (with a spacing of 8.5 m) and 64 m (with a spacing of 4 m). The
depth range of hydrophones was from 50 m to 180 m.

Figure 3.25. Typical sound speed
profiles for the THETIS-2 experiment. i K
(Adapted from [148].) -2.0L% KM
According to the oceanographic data obtained simultaneously with the acoustic
measurements, the acoustic waveguide had a surface-duct channel over the entire
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region. Typical SSPs are shown in Fig. 3.25. The strong spatial variability of sound
speed was observed mostly near the ocean surface. The thickness of the main
variability layer was about 150 m. Spatial variations of the sound speed were the
greatest near the surface and did not exceed 10 m/s.

From the results simulated by ray and mode programs for the case of short
irradiated pulses with the temporal duration, 1, the time structure of the received
acoustic signal can be characterized as follows. The group of the separate ray pulses,
corresponding to the steepest ray-emergence angles (relative to the horizontal axis),
arrives at the receiver first. Later, the group of the pulses corresponding to smaller
grazing angles arrives. Relative differences in the travel times between different
groups decreases with increasing time, /. From some value ¢=,, the pulses

corresponding to the different clusters of grazing angles can not be distinguished.
One separate group of the ray pulses is usually formed by four rays, which have close
emergence angles and close propagation times. The first ray (with minimal delay) in
the group leaves the source in the downward direction and arrives at the receiver from
below the source horizon, and the last one leaves the source in the upward direction
and arrives at the receiver from above the source horizon. In particular, when the
receiver is near the axis of the sound channel (and its depth is also close to the source
depth), the two rhiddle rays have the same temporal delay, and four rays, forming the
separate ray pulse, transform into three. In this case the intensity of the individual
pulses, corresponding to small grazing angles, exceeds considerably the pulse
intensities of the rest of the groups. .

Data processing consisted of matched filtering of the received acoustic signal
with subsequent coherent or incoherent averaging of the matched-filter output.
Assuming that the ocean sound channel can be modeled as a linear time-invariant
system and that the sound propagation can be described by the ray approach, one
usually uses matched-filter processing to maximize the signal-to-noise ratio and to
optimize estimations of the signal amplitude and time delay in added external
Gaussian noise. Matched filtering represents the convolution procedure in the
temporal domain [16]. Coherent averaging consists of summing the complex filter
outputs. Incoherent averaging consists of sunming the intensities of the convolved
" signals. At the first stage, matched filtering was applied to the acoustic signal
received by the center hydrophone. Maximization of the filter response for this
hydrophone allowed for estimating the absolute time of radiation and eliminating the
Doppler frequency shift. Thus, the random Doppler effect in the frequency domain
and variations of the time delays due to irregular drift of the ship could be eliminated
at the second stage. The information obtained about frequency and time-delay
corrections was then used for processing acoustic data from other hydrophones of the
array. o

The examples of the incoherently averaged intensity of the convolved signals
are shown in Figs. 3.26a and 3.26b (solid lines). Depths of the hydrophones were
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about: (a) 160 m and (b) 60 m. The intensity, 7, is in dB normalized to some fixed
level. The absolute value of the propagation times, ¢, for the groups of non-
differentiated rays was calculated in accordance with the prior estimation of the
source-receiver horizontal distance, a= 256.43 km. To identify separate pulses, the
dependence of calculated sloping angles of the rays (for the SSP near the source) on
time delay, ¢, are plotted in Figs. 3.26a and 3.26b as circles. The calculation were
made for a horizontally inhomogeneous model of the ocean. Variations of the SSP
along the propagation paths were determined by linear interpolation of the profiles
near the source and receiver (profiles 1 and 2 in Fig. 3.25).
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Figure 3.26. Temporal dependence of incoherently averaged intensity of the matched-
filter output for the hydrophones at the depths of: (a) - 160 m, (b) - 60 m. Circles
correspond to the arrival times of the separate rays with different arrival angles. (Adapted
from [148].) ' :

A comparison of the experimental data with the theoretically calculated delays
allows identifying the groups of pulses formed by the four rays. The accuracy of the
identification can be improved by determining arrival angles of the ray pulses. For
this purpose, the dependence of the phase difference of the complex filter outputs
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from adjacent hydrophones on time delays can be determined. The dependence of
phase difference, Ay, on time delay is shown in Fig. 3.27 for two hydrophones with
a vertical spacing of 8.5 m. For the groups B and C, Ay (=y,-vy,, where y, is the
signal phase at the hydrophone close to the surface) changes sign from positive (the
first ray in the group) to negative (the last ray in the group). For the group of rays, 4,
the phase difference changes sign from negative to positive, because |Ay|>r, but Ay
can be determined only with the accuracy of =. ‘The result shows that the first ray in
the group arrives from below the receiver horizon, and the last ray arrives from above
the receiver horizon. The fields of the two middle rays in the group interfere with one
another, depending on the difference of the phases along the ray trajectories.

9 rad
~Ir
1694 1696 1698 1700 1;02

Figure 3.27. Signal-phase difference on two adjacent hydrophones versus arrival time for
different groups of rays. (Adapted from [148].)

Measurements have .shown that, in the case of a moving receiver, a
considerable portion of the ray pulses (corresponding to steep grazing angles) can be
identified. The accuracy of the time-delay estimation is proportional to the radlated
pulse duration, 1,.

3.10 A THREE-DIMENSIONAL MODAL APPROACH IN OCEAN
ACOUSTIC TOMOGRAPHY '

The conventional OAT scheme is based on measurements of the delay times
between sound signals propagating along different ray paths in a USC. However. it
has been noted (e.g., in [12]) that the ray description of the field at frequencies
7=100-1000 Hz is invalid at horizontal distances r>10-30 km from the source in the
shallow water. The same is true (at distances r>100-200 km) for narrow-surface-duct
waveguides in the deep ocean, which are typical for many regions of the World
Ocean. The mode description of the field is the most realistic approach in these cases.

Vertical localization of the acoustic field is much less pronounced for shallow-
water waveguides, because of the rapid de-phasing of the modes in such waveguides.
Therefore, one cannot measure the parameters of individual levels of a shallow sea,
so that the tomography of shallow waters is necessarily two-dimensional (or planar).
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For these cases it is inappropriate to attempt a reconstruction of the structure on the
basis of the interpretation of tomographic data according to the scheme considered in
[12], which essentially exploits the local influence of inhomogeneities intercepted by
each ray path of the sound field. Consequently, a different procedure must be applied
- for the reconstruction in this case. A two-dimensional reconstruction of the structure
in a certain region surrounded by a selected configuration of sources and receivers can
be implemented by measuring the phase or envelope delay of different propagating
modes. A depth-averaged value, weighted in correspondence with the structure of the
given mode, is determined for the sound speed in the planar channel. This is the
two-dimensional scheme described in [36], where it is proposed to measure the phase
of a stable tonal signal in one of the modes identified by the receiving array.
On the other hand, the differences in the vertical structure of modes means that
they carry indepzendent information about different depth levels. Consequently, the
- identification of several modes (either by means of arrays or as a result of the splitting
. -of pulse signals by inter-modal dispersion) gives the hypothetical possibility of
reconstructing the vertica! structure of the waveguide.

Three-dimensional tomographic reconstruction using normal modes can be
implemented in two stages. The planar ((x,y)-plane) tomographic problem should be
solved at the first stage. The initial data for the two-dimensional reconstruction can
be either the modal-phase perturbations [36] or the modal-pulse delay times by -
analogy with ray-based tomography. Variations of the characteristics of the nth mode
along each transmission path (in fixed planar channel) between the radiating, p, ard
receiving, ¢, arrays are given by the fol]owmg equation for the modal-phase
tomography :

390 = [ox G, ' ' (3.22)
e A .
where S‘P“,','l’ is the phase variation of the nth mode between the source, p, and the
receiver, ¢, and & is the perturbation of the horizontal wavenumber of the nth mode.
For the tomographic scheme, based on time-delay measurements, we have

(323)

: T v ()
) _ n
8‘tpq = - f dl. s

ov?
" where t"') is the envelope time delay of the nth mode on the. path pg and v, is the
. group velocity of the nth mode.

" Using the measired set of values of S‘P"" or 8% at the first stage, one can
reconstruct the two-dimensional field of the quantmes 3k (x.y) or bv,(xp), respectlve.y

58




This reconstruction is usually made by partiticning the investigated region into a
certain number of discrete cells and reducing the integral equations, Egs. (3.22) and
(3.23), to an algebraic system of the form [12, 14]:

v=Yba, (3.24)

where y, is interpreted as 8%, for Eq. (3.22) or Stp , for Eq. (3.23), b,=R, is the length
of the ith path in the jth cell, and g, is the parameter value in the jth cell (8x, or dv,),

which we would like to reconstruct. The inverse problem, Eq. (3.24), is known to be
ill-posed, and its solution must be formulated with the application of appropriate
regularization methods [6, 16, 102]. .
The vertical structure in each of the segregated cells, j, is reconstructed at the
second stage. The relation between the perturbations, 8k, or 8v_, obtained at the first

stage, and small perturbations of the SSP, 8c(z), in the vertical waveguide piane is
used for this purpose. It can be readily shown that this relation for 8, has the form

8ic, = (0¥2K,) [ 5E) o2, {(3.25)

where 5(z)=8[c ()] is an unknown inhomogeieity, ¢, is the vertical eigenfunction
of the nth normal mode, and ¢, satisfies the normalization condition f ¢X(z)dz=1. For
]

the perturbations of the group velocity we arrive at:

B, = [dSE)6,2), . SR (3.26)

where 6,(:)=)" 4,,0,()9,(),.c,=0/, is the phase velocity of the nth mode, and

A,,=c,(zv,-c,) O A, (n=m)=[4e%c,v /(1O f d=[ 9,(2)¢,(=)c?(2)].The probiem of the
reconstruction of S(z) from Eq. (3.25) or (3.26) is also ill-posed. First of all, the
systems of functions, {u,} and {6,}, do not form complete sets. Secondly, only some
subset of the set of propagating modes, {¢,}, can be determined from experimental

data. Consequently, some kind of a priori information must be taken into account in
order to reconstruct the profile, S¢) [12, 14]. In particular, it is convenient in many
cases to seek a solution in the form:

S0 =X o £ | | (.27)
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where o, denotes unknown constants, and the functions, £, , are chosen to be as close

as possible to describing the expected structure of the inhomogeneity. Then,
substituting Eq. (3.27) in Eqs. (3.25) and (3.26), we once again obtain the algebraic
system of type Eq. (3.24), in which y =8« , a,=a,, and b, =(0*2«) f dz fm(z)qai =) for

nnr

modal-phase tomography, or y, =8v v , a =a_, b,_=Y. 4, f a1, (), () 9,(=) for modal-
1

" on? Tn Tmd Ynm

pulse tomography. Solving the resulting system by some regularization method, we
obtain an expansion of the vertical structure in the selected basis of functions, {f,(z)}.

The restrictions, formulated for the planar scheme of modal-phase tomography
in [36], remain valid for the proposed three-dimensional, mode-tomography scheme.
In addition, the accuracy of the delay-time measurements for modal-pulse tomography
is subjected to the same requirements as for the ray-pulse scheme [12].

As a conclusion, it is important to note that the proposed scheme admits a
natural factorization of the three-dimensional problem into a family of
two-dimensional problems, so that the methods developed for estimation of the
resolution of tomographic schemes in two-dimensional cases are applicabie here [14,
45]. {Ray-based tomography would allow a factorization only by means of a special
algorithm [45].)

3.11 DOPPLER ACOUSTIC TOMOGRAPHY OF BOTTOM STRUCTURE

The Doppler Tomography Method is based on combining the synthetic sonar
aperture technique with Doppler effects. It was first used with radar to map lunar
reflectivity and later in ultrasonic engineering and acoustics [74, 117]. It was
demonstrated that a use of the technique in deep-ocean waveguides gives one an
opportunity to separate the spatial dependencies of the Doppler shifts, corresponding
to different-order-bottom-reflected signals, to signals scattered by the roungh
interfaces, and to signals propagating along "pure"-weter rays. The spatial
dependence of the intensities of the signals obtained by integration within rather
narrow frequency bands and distance ranges along the appropriate trajectories in the
Doppler-frequency-shift-versus-distance plane can be used for determining the
reflecting and scattering properties of the ocean bottom. This method has been
employed to find the angular dependence of the reflection and scattering coefficients
of acoustic signals from smooth and rough bottoms, and to determine density and
sound speed in the sediments. In the present section, the opportunities for the use of
the Doppler tomography for determining the frequency and angular dependencies of
the scattering strength for. tonal acoustic signals are discussed. Theory and
experiment using the technique are presented in [74, 117].




Figure 3.28 shows the results of the experiment conducted near a sharp coastal
slope between shallow and deep-water regions of an ocean waveguide [117]. The
sources, emitting tonal acoustic signals with the frequencies 7,=135 Hz and £,=238
Hz, were towed with the velocity v = 2.1-2.6 m/s at a 50-m depth. Acoustic signals
with frequencies, f(r), dependent on source “position were received by a single
hydrophone of an autonomous recording station located at a height 100 m-above the
bottom in the shallow part of the wavegulde at the range r= 0 :

Af Hz T

. evea

. 0.8 '
_ 70 r, km 30 40 50 r, K
Figure 3.28. Dopplergrams for signals at (d) 135 Hz and (b) 238 Hz received on the shelf

. at =0 from a source ship moving off the shelf beginning at 30 km (see Fig. 3 29b).
(Adapted from [117].)

To obtain the Doppler-shift dependence on horizontal range,'Aj(r) =Ar)-f, the
received signal, p(f), which was recorded simultaneousiy with a reference signal, was
heterodyned at the intermediate frequency, f= 1 Hz, and filtered in the band, Af =23
Hz. The signal spectrum '

I3

E qu\t ) exp(27tft ) df

T

(3.28)

| S{tfn) =

was calculated for a'duration,- 1=340 s, of each sample and with a time step of
br=100 s (1=1Ar, 1=1,2..). The processing results are presented in Fig. 3.28 in the
’ Doppler-shlfr-versus -distance plane, (4fr), for the ranges, where the contribution of
the signals scattered by the underwater slope is the most essential.

The followmg conclusions can be drawn from the Dopplerograms shown in
Fig. 3.28. First, the bottom-reflected srgnals which form the field in the shallow part
of the wavegurde correspond to the almost horizontal Doppler trajectory, reliably
observed when towing the source beyond the distance > 40 km. The tow distance
exceeds the ray-cycle length (10 km) for this region of the waveguide. The Doppler
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shifts, corresponding to these signals, are not resolved, because of the small grazing
angles, y<10¢, of the corresponding rays reaching the receiver.

Second, when the source leaves the shallow part of the waveguide (+>30 km),
positive Doppler shifts appear at the Dopplerograms, which correspond to the signals
transmitted from the source in the direction of its motion. After backscattering at the
bottom slope, the signals reach the receiver by the rays that have grazing angles within
the interval 5°<y<16°. As the source moves along the deep-water part of the
waveguide, the Doppler shifts, corresponding to the scattered signals, vary from
maximum (Af>0) to minimum (Af<0) values. At the frequency f,=135 Hz within the
distance range 37<r<48 km, the interference structure of the scattered field, having
four Dopple} lines Af(r), j=1....4, is seen distinctly (see Figs. 3.28a, 3.29a). These
separate lines correspond to signals scattered by four characteristic discontinuities of

the sloping bottom, numbered in Fig. 3.29b in the same order from the left to the
right. ' :

| af, Hz
0.2/~

Figure 3.29. (a) Integration domains 1, 2, 3, 4
in the plane “Doppler shift vs. distance”,
corresponding to the scattering from appropriate

bottom discontinuities; (b) Bottom profiie. 2. y ' - ; -
(Adapted from [117].) 30 34 38 42 46 rkm

Third, at the higher radiation frequency, £,=238 Hz, it is more difficult to single
out the Doppler trajectories, Af(r), against the background of scattered signals

produced by the interaction of primary waves with a rough bottom in the range of the
incidence angles 0s<y<n/2 (see Fig. 3.28b). That is, the fine interference structure of
the scattered component of the acoustic field vanishes with an increase in radiation
frequency. The latter means that the coherence of the Scattered-field component
decreases with an increase in radiation frequency. In fact, at £,=238 Hz the

interference structure of the scattered fizld is characterized by the only distinct
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_ frequencies of 238 Hz (solid line) and 135 Hz

Doppler trajectory, Af,(r), within the range 27<r<48 km. This distinct line

corresponds to signals scattered at the first discontinuity of the underwater slope. The
Doppler trajectory, Af,(r), can hardly be seen in the background, while the trajectories

Af(r) and Af,(r) are practically absent.
To obtain and compare the angular dependence of the scattering strength, F,(6),

at different frequencies for the first, j =1, and second, j =2, discontinuities of the
underwater slope, we first integrate S(¢ft) with respect to Doppler frequency

AL
1
Jir) = 5 [ SG@).f0) df (3.29)

5oam

in the given band, 3f=8(A)=0.02 Hz, and é,l‘ong the corresbonding trajectories,
f;=8f(r )+, at the plane; (4fr) (Fig. 3.28). As a result of the processing of Eq.(3.29),
we can obtain the spatial dependence of the intensities, J,(r), of the signals scattered

at the corresponding discontinuities. We can then calculate the propagation losses,
Jj'('r), due to the first and second discontinuities and the incidence angles of signals

F,, dB
60 a)

Figure 3.30. The dependence of scattering
strength on the angle of incideuce on the first
(a) and second (b) bottom discontinuities for the

(dashed linie). (Adapted from [117].)

on the discontinuities, 6(r), by using ray theory. It was assumed and experimentally
proven that the bottom-reflection coefficients in the shallow part of the ocean
waveguide was equal to unity for all presented incidence angles. After that we can
use the experimental data for the acoustic-field intensity, J(fy), and find the nécessary

angular dependence for the scattering strength by employing the known relation:
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F,(6) = logJ(r(8)) - logJ,'(r(6)) - logJ (/). ' (3.30)

The results, obtained from the experimental data in accordance with Eq. (3.30),
are given in Figs. 3.30. These results show that, if the radiation frequency increases
by about 1.8 times, the scattering strength essentially increases by 5 to 10 dB only
within the incidence angle range -20°<6<40°, which is closer to the normal incidence
of the primary waves on the slopes of the two discontinuities.

These results demonstrate the broad possibilities of the Doppler tomography
method for the determination of seafloor characteristics. B
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Chapter 4:

DIFFRACTION TRANSMISSION TOMOGRAPHY FOR MESO-
AND MICRO-SCALE OCEANIC INHOMOGENEITIES

Previously discussed” tomographic methods were based on the adiabatic
approximation, which neglects inter-mode and inter-ray energy exchange. Methods
of diffraction tomography do not use the adiabatic approximation. As it is known [8],
the applicability condition of the adiabatic approximation is define by the inequality
L>D,, where L is a characteristic scale of inhomogeneity, D, is a' maximum scale of
the horizontal interference structure of the acoustic field (e.g., length of a ray cycle).
If L<D,, then the effects of scattering or diffraction of the acoustic field in the
vertical plane become prohounced. ,

This section deals with the basic principles of acoustic reconstruction of the
ocean volume and surface inhomegeneities for the case of L<D,. More detailed

mathematical aspects of the solution of the integral equations of diffraction
tomography can be found in [5, 118]. o

4.1 INTEGRAL EQUATIONS OF DIFFRACTION TOMOGRAPHY

Diffraction tomography generally includes a variety of methods that utilize (in
their theoretical basis) different physical approximations, such as Born's, Rytov's,
Kirchhoff's, etc. [67, 119].  To outline some general problems of diffraction
tomography, we shall consider an approach based on a single-scattering
approximation {67]. To this end, we shall relate static ("frozen") inhomogeneities of
the sound speed, &c, to the space-time structure of the acoustic pressure field, p(R.i).
The sound source wiil be monochromatic, i.e., PR.H=p(R)exp(int). Assuming the
sound-speed perturbations, &c, to be small (|5c|«c) and applying Green's theorem to
~ the Helmholtz equation, we arrive at the following integral equation for the scattered

field [49, 67]: A '

Ps(R)=P€R)-PO(R)=fd3R’W(R,R NeR), 4.1)

where p,(R) isihc acoustic insonifying field ("illumi_natihg"'ﬁeld) in the absence of
ithomogeneities, i.e., 8¢c=0, PSR) is the scattered (diffracted) field, g(R)=25.(R)/c(R)
is a function describing an inhomogeneity, and
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WRR=GRR VS RNPRY, Kk(R)=0lc(R),

where G,(R,R" is the Green's function of an unperturbed medium. Therefore, in

diffraction tomography, the problem of reconstruction of the inhomogeneity g(R )
from measured data, p(R), is generally reduced to the solution of the integral
equation (4.1). However, the field p(R) and, hence, the kernel of the integral
equation, W(R,R"), not only depend on the location of the sources and receivers but
also on the sound-propagation conditions, which are described by the function gRY.
Because of this, strictly speaking, the diffraction-tomographic problem is nonlinear.
A single-scattering approximation whose applicability condition is the
. smaliness of the energy of the scattered field, p(R), as compared with that of the non-
diffracted field p(R) allows the problem to be linearized. In this approximation, the
total field, p(R), is replaced by the non-diffracted field, p,(R), in the kernel of Eq.

(4.1). Asaresult, Eq. (4.1) is reduced to a Fredholm mtegral equation of the second
kind with the kernel

= Wy(RR )= G(RR k(R ) pRY).

In general, the solution of this integral equation also involves certain
difficulties. However, in a number of particular circumstances, the reconstruction
algorithm for g(R’) can be simplified considerably. Let us illustrate this for a plane
illuminating wave, p (R)=exp(ik;R). We assume that the unperturbed reference
medium is homogeneous, i.e., ¢(R) =C =const, and unbounded in space. If the
measurements of p(R) are performed in the far field with respect to the

inhomogeneities, i.e., |R’| « |R]|, then

2
_RR RR/ :
0=|R-R'| < R-= +-—(Rﬁ2 ( ] + (42)

R

Substituting Eq. (4.2) into the exponent of the Green's function of the homogeneous
unbounded space, I'j(R.R )=exp(ik,R,)/R,, we can take into account only the first two

expansion terms for the Fraunhofer diffraction zone: k,|R’|>« |R|. Then, the integral
transformation (4.1) with the kernel W, (R,R”) can be reduced to the Fourier tranisform
of the desired function g(R) [67]:

PSR)=A4,[ d*R'g® e MO = 4, gg(R)), (43)
where g(g) is the spatial spectrum of g(R),

k2
0 gk

’ R
R)=k -k, k.=kX 4 =
q(R) =ksk, sThy 4T g
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and V, is used to designate the inhomogeneity-occupied region.

Therefore, the reconstruction algorithm for g(R), based on Eq. (4.3), consists
of an inverse Fourier transform of the set of all the measured values of the spectrum
&(q) ~p(R). An exhaustive examination of the values of the complex amplitude of

diffracted field (projections) for all possible vectors ¢ can be accomplished in two
ways. The first method involves running through all scattered-wave observation
angles and for all iltuminating-wave incidence angles. It is apparent in this case that
the measured values of the spectrum g(q) in the three-dimensional space of the wave
vectors g fall within a sphere of radius 24,. Consequently, spectrum values outside

this sphere, for |g|>2k,, can only be determined from a priori assumptions.

The second method of an exhaustive search of projections invelves running
through all frequencies for fixed observation and incidence angles. Here, a
measurement region in the space of vectors ¢ is a straight line segment whose
boundaries are determined by the range of frequencies used. In reality, even the two
methods combined often do not allow the spectrum g(q) to be determined
sufficiently. The limited number of projections make it necessary to interpolate or
extrapolate (based on certain a priori assumptions) from the measured range of the
values of ¢ to the nodes of the lattice for which the integral-equation-solution
algorithm is realized. :

Let us consider another example of practical interest. Let the measurements
be performed with an antenna of sufficient length, so that inhomogeneities for the
antenna are located in the Fresnel diffraction zone. In this case, the receiving system
allows measurement of not only the wavefront slope, as in the case of the Fraunhofer
diffraction, Eq. (4.3), but also the wavefront curvature. This makes it possible to
focus the antenna into a preselected region in space, as in optical systems [120]. The
formal transition to the Fresnel diffraction is accomplished by taking the third
(quadratic in R,) term of Eq. (4.2) into account. As a result, the reconstruction of

inhomogeneities will be reduced to running through the focusing parameters (or space
peints into which the receiving system is focused) with subsequent integral
transformation of the measured data.

42 SPECIFIC FEAT URES OF DIFFRACTION OCEAN ACOUSTIC
TOMOGRAPHY

Diffraction methods of tomography have been developed and used extensively
in various fields of science and technology, such as ultrasonic diagnostics,
non-destructive testing [51], etc. The medium, however, is assumed to be
homogeneous in the above applications. The ocean environment is much more
complicated. In the low acoustic-frequency range (10 Hz - 1 kHz), the ocean appears
as a multi-mode waveguide, which can be inhomogeneous in the vertical and
horizontal directions. Reconstruction objects are quite diverse in acoustic diffraction
tomography of the ocean and include both spatially distributed random
inhomogeneities (subsurface waves, turbulence, sound-speed fine structure , and sea
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waves) and relatively compact deterministic formations (icebergs, fish shoals, and
various types of acoustic lenses). Therefore, as reconstructable parameters
characterizing the object under investigation, one can consider sound-speed and
density perturbations, the characteristic function of the body (equal to one in an area
occupied by inhomogeneities, and equal to zero outside it), and the correlation
function (or its spectrum) of sound speed or waves.

Let vs discuss the specific features of diffraction tomography in ocean
acoustics. To this end, we shall consider the relationship of the measured field, EAR),

to the function g(R") for a horizontally stratified reference waveguide, k2(R)=k3(-).

A mode description of an acoustic field will be used in this case.
Let the initial field. (R), be generated by a point source located at the point

" R=(r,), where r, is the vector coordinate in the horizontal plane and :, is the
vertical coordinate. Assuming the inhomogeneity-occupied region, V., to be bounded
and located far from the source and receiver, mode expansions of the Green's
functions, [ (R.R") and p,(R')=G(R',R,), in the wave region k|R-R'|,k,|R'-R | »1 can
be substituted into the formula for the kernel of Eq. (4.1) in a single-scattering
approximation, #,. Then

PSR.R )= ng; A, RR)0, ()0, (), | (4.4)
A (RR) iffdzR’an(R,R:.;R')gnm(R'), 4.5)
&R = [T, ) gR" Y, (4.6)
T.E0=KEN0,EN0,E, (4.72)

and
LonRR R = (i, | R-R| |[R™-R |}
x exp(-ixmm-xq-mm|R/-R,.|—i(n/2)), | (4.7b)

where N is the number of waveguide-trapped modes, ¢,(z) are the vertical modal
eigenfunctions of the reference waveguide, and 'x, are the horizontal modal
wavenumbers. The complex amplitude of the scattered field, P«R.R), is entirely
characterized by the matrix 4, i, whose elements are defined by the acoustic-path
orientation (source-receiver couple (R,R,)) and the numbers of the emitted, », and
received, m, modes. Therefore, the maximum number of independent tomographic

projections equals MN?2, where M is the number of acoustic paths. The elements of
the matrix |4, | are readily determined from the diffracted field values because of the
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orthogonality of the vertical modal eigenfunctions. Considering the normalization

of the vertical modal functions f @X(2)dz=1, Eq. (4.4) yields
0

AR )= [ Az, pARR) 9,) 0,2 (4.8)

It is apparent from the above that Eq. (4.4) imposes no fundamental constraint on the
possibility of determining |4, 1. A more complicated situation arises when g(R") is
reconstructed from the values of 4, (R.R,). The kemnel of the integral transformation
of g(R") to 4, (R.R,) is factorized in horizontal (kernel Z,,) and vertical (kernel T,,)
coordinates. Consequently, the initial integral equation is split into twe Eqs. (4.5)
and (4.6).

The reconstruction algorithm for the horizontal structure, based on Eq. (4.5),
for fixed indices » and m is totally identical to the above case of a homogeneous
unbounded space. The problems arising here are similar as well: restrictions in
measuring the total spatial spectrum, g, (¢, the need to interpolate or extrapolate to
the nodes of the given lattice, the need to use a priori information, etc.

The possibility of reconstruction of the structure of inhomogeneities in a
vertical plane, using Eq. (4.6), depends on the matrix |7, (z)i. 4 priori information
is generally required due to the incompleteness of the set of N2 functions T, (z/).
This can be demonstrated using an example of an isovelocity waveguide, £2(z)=const.
Writing the waveguide eigenfunctions as the sum of two Brillouin waves, exp(+iy, z),

where x,=//kZ-1%, we obtain

G R = }; &' Ax,) -

Summation is performed over all combinations of "+" and "-" signs. Since the fatrix
Ig,.I is only determined by spectrum components of the type g(x,-x,,) and g(x,+1,),
where g(-yx)=(+y), information about the other spectral components is absent in the
single scattering approximation. Moreover, g, is proportional to the sum of spectral
components g(x,-x,) and (¢, +x,). It is, therefore, impossible in general to determine

the vertical spectrum of inhomogeneities without some a priori assumptions about
its structure.

The role of a priori information becomes much more important in the ocean
than in the case of a homogeneous unbounded space. Firstly, the incidence and
scattering angles are restricted to small values in the vertical plane. Secondly,
measurements with a large number of receivers and transmitters are difficult to realize
in the horizontal plane because of technical and cost reasons. Thirdly, a strong
dependence of reconstruction accuracy on frequency restricts the range of the
illuminating field frequencies. Thesc factors make it necessary to choose an
inhomogeneity model that can be described by the smallest number of parameters
sufficient for solution of the reconstruction problem with the given considerable
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_incompleteness of the acoustic information measured.

‘ Another important aspect of diffraction tomography of the ocean involves the
acquisition of information on the diffracted (scattered) field structure. In addition to
the above:mentioned requirements to get an accurate reconstruction, such as
illuminating-angle variations, diffracted-field recording, or the illuminating-field
frequency variation, one should use the methods to determine the matrix ii4,,,| . This

would be equivalent to singling out individual waveguide modes. Spatial filtering by
- vertical or horizontal antennae is used for this purpose. A selection of certain
intervals of signal-arrival angles in this case can distinguish a certain mode or a mode
package [2, 18, 48, 56]. The same aim can be accomplished through time sampling
together with puise excitation. Finally, the Doppler effect can be used in diagnostics
of inhomogeneities when the observation time is much greater than the characteristic
scale of the inhomogeneity temporal variation [18, 48] or when the illuminating
source is in motion [3].

43 TRANSILLUMINATION PULSED DIFFRACTION TOMOGRAPHY
OF RANDOM OCEANIC INHOMOGENEITIES

The conventional solution of the diffraction tomography problem involves the
use of wideband illuminating signals. Temporal sampling of short pulses scattered
by an inhomogeneity allows singling out individual regions, pulse spaces, of the
ocean medium from which the scattered signal reaches a receiver at one and the same
time [67], i.e., temporal sampling allows inhomogeneity localization in a
corresponding pulse space. If the receiving antenna has a sufficiently narrow
directional pattern in the horizontal plane, a scattering inhomogeneity can be fully
localized. Its location is determined by the region where the corresponding pulse
space and the direction pattern of the antenna intersect. Such a scheme works well
if the horizontal inhomogeneity scale, L, is of the order of the lllummatmg
wavelength, A. )

If L» ) such that the scattering form factor ML is less than or of the order of the
antenna directional pattern width in horizontal plane, the inhomogeneity scatters
mostly in forward direction.  Then the scattered signal concentrates near a straight

“line that connects the source and receiver. In this case, no conventional method
permits inhomogeneity localization with .respect to the horizontal coordinate.
Moreover, a relatively weak scattered signal arrives at the receiver simultaneousty
with a relatively strong illuminating (diréct) signal and is masked by it. There are a
few different approaches for solving the problem in this case. Let us considér one of
them -- a differential method {2, 50], which employs the multl-mode structure and
dlspersmn properties of an ocean waveguide.

431 Modal leferentlal ‘Ocean Acoustlc Tomography
The backscattermg phenomenon [67, 121 122] ‘or the mﬂuence of thev

. inhomogeneity on the characteristics of signals transmltted through the investigated
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region are used for the acoustic diagnostics of such inhomogeneities [8, 41].
Inhomogeneities can be localized, i.e., the spatial distribution of their parameters can
be reconstructed, by pulse gating in combination with directional radiation and
reception or by the application of acoustic tomography principles. These two
approaches supplement each other. The first one is usually employed for obtaining
information about inhomogeneities with the characteristic scale, L, of the order of the
acoustic wavelength, A. Then, one can adjust the algorithm to detect inhomogeneities
with scales L»\.

The tomographic principle of the localization of inhomogeneities is based on
the simultaneous processing of a large number of arrived signals transmitted through
the investigated region of the ocean along different acoustic paths. In fact, let us
assume that a radiating system effectively generates only the #th mode of an ocean
waveguide and that a receiving system detects the mth mode [50], and the group
velocities of these modes, v, and v, , noticeably differ. Let an inhomogeneity be

located at the horizontal distance x; from the source. The inhomogeneity causes

energy transformation from the nth to the mth mode (Fig. 4.1). The signal-
propagation time along the path is t=afv, +x(1/v,-1/v,), where a is the length of the
path. It can be easily seen that propagation times depend on the positions of the
inhomogeneities, so the distribution of the inhomogeneities along the path can be
reconstructed from the temporal structure of the received signal, as is done in the
reconstruction of the scatterer distribution from backscattered signals [8]. This
methodology also applies to the case when excited and received modal spectra are
sufficiently narrow and distantly spaced. It will be shown below that the mode
selection problem can be solved not only by using long vertical arrays, but also by the
existence of patural "mode shadow" zones in the ocean.

Figure 4.1. Energy transformation from mode » to mode m
due to the inhomogeneity influence. (Adapted from [50].)

Here we consider a more detailed analysis of the reconstruction of the
statistical parameters of the volume perturbations of the sound speed, dc(x,y,=,), and
the relief, {(x,y,1), of the rough ocean surface along the speciiied acoustic path from
the analysis of the intensity envelope function of the received pulsed signal. We
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assume that a source generates the nth mode with the amplitude 4 s(n) in a waveguide
with the vertical sound speed profile, c(z), and that a receiving system identifies the
mth mode with the amplitude 4,(m). We consider the perturbations of the sound

speed and the elevations of the rough surface to be stationary in time and quasi-
homogeneous with respect to the horizontal coordinates, x and . Assuming that the
Rayleigh parameter P=2kosinx«1 [8], where k is the sound wave number, ¢ is the
root-mean-square displacement of the rough surface, y is the grazing angle of sound
wave relative to the horizontal piane, and Sc«c, we can represent the spectral
compenent of complex scund pressure at an arbitrary point of the waveguide in the
form of the modal sum [8, 50, 125, 126]

N
Pryz0) = )0 S (009, (),
n={
where ¢ () denotes the eigenfunctions of the unperturbed waveguide, S, denotes the

complex modal amplitudes, which depend on the inhomogeneities, and » is the
number of generated modes. Taking the quasi-static nature of the inhomogeneities
into account, we may assume that ¢ (z,0) ~ ¢,(-,0,) = ¢,(=), where o, is the carrier

frequency of the sensing signal. Applying Green's integral theorem for the first-order
perturbation approximation, we obtain the complex amplitude of the backscattered
component of the mth mode [119, 125, 126]:

» e
SV y,m) = iy ffcix ‘dy’ [do'd](x"y 0
X o

n={
* HPl (o= P 10y R 1500y - 0). (4.9)

In Eq. (4.9) $\"(xp,0)=AmF0-0 )HO(x (0+0,)x21y?) denotes the modal amplitudes
of the radiated signal, F(w) is the frequency spectrum of the radiated signal, and

b, (x v 0!y =(1/8m)p(0) (0)o(x 'y ') + (1A m)x
(0, +o --m")zfd: 9.0, (= Nclx 'y 2 e (Y. (4.10)
[t

Eq. (4.10), which describes the scattering matrix; includes terms that characterize
scattering by the rough surface and by volume inhomogeneities. Small-angle
scattering occurs for large-scale inhomogeneities [8, 67, 119]. In this case, we may

use the Taylor series expansion: yx ?+y Z«x'+y?/2x ", J(a-x "2 +y*=a-x"+y"/2(a-x"), and
K, (0)=x,(0,)H0-0 ), +y,(0-0,)*, where v, =(dk, /do) 'p-, 1S the mode group velocity
at the carrier frequency, and ¥,,=0.5(d%c, /do?)|,_ . Using these expansions and
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neglecting intra-modal dispersion (for the signal with narrow spectrum), we obtain
from Eq. (4.9)

SWa,0,9)= 42As(n)fdx fdy’b (x’y/,t—a;:lJ [@E;\/x’(a—x’)]" x

4.11)

a-x’ x’ . on B K
- -= | exp[~ix, (a-x"+y *2(a-x ik (x "+y */2x ) -in/2].

m n

On the basis of Eq. (4.11), the intensity of the single-scattered component of the field
at the output of the receiving system has a form

UpP@0.n) = 37 Am)A (A mas @i, (4.12)

namaLp

where I} depends on the spatial spectrum of the inhomogeneity, #, and is given by

Ih = (327r/k3a)fdx Ft-(a-x"Yv, —x'v,) F *(t-(a- x’)/v -x'pv ) x
‘ (4.13)
x expli(k, -k, x "+i(k, -k, Ma-x )] f diey W 10, +%, =%, -K )23k, x ]

The spectrum W;;‘(kx,ky;x /y is the Fourier transform of the correlation function of the
inhomogeneity: '

By tx )=, (x "exl2,y +yl2, 1 2)b [ (x ' -x12 v - yi2,1-1/2)

with respect to x and y at t=0. It has been assumed in the derivation of Egs. (4.11)-
(4.13) that L>M/aAfic, where Af is the width of the frequency spectrum of the
radiating signal, and L/c« T, T,, where T and 7, are the temporal correlation radii
of the sound speed perturbations and the surface roughness respectively. Let F(r) be
a rectangular unit pulse of the duration 7. Then, using Eq. (4.13), we can obtain from
Eq. (4.12):

)

(lpMa, | = 32n/ka) |4 (m)|* |A(n)|? Ax fdk W (&, K, kx5, (4.14)

where xg=v,v (t-av,,~T/2)/|v,~v,| and Ax=v v T/lv -v_|. It has been assumed in Eq.
(4.14) that the spatial resolution, Ax, is smaller than the horizontal fluctuation scale

of the statistical characteristics of the inhomogeneities.
It is evident from Eq. (4.14) that the signal scattered by an mhomogeneous

75




layer of the thickness Ax at the distance x,(1,) from the receiving system is recorded
at ¢=1,. Consequently, the distribution of the spatial inhomogeneity characteristics
along the path can be reconstructed by scanning 7.

The spatial resolution Ax is determined by the quantities 7 and |v,-v,|. A
required spatial resolution can be achieved by using modes with distinctly different
group velocities. This situation occurs for shallow-sea conditions and for the ocean
waveguides with surface duct. For the depth dependence of the sound speed profile,
¢(2), shown in Fig. 4.2a, Fig. 4.2b shows a typical curve of the group velocity, v, , as
a functicn of the mode number n. The resolution is Ax = 20 km for [v, -v, |~ 10 m/s
and 7=0.1 s. The estimate of Ax is obtained without taking intra-modal dispersion
into account. Intra-modal dispersion causes Ax to increase, because 7 must be
replaced by the duration 7, of the spread pulse. This diminishes the sensitivity of
the method. The spread of the pulse by intra-modal dispersion can be compensated
for by special filtration. The form of the filter depends on x, and the configuration

of the overall signal-processing system. Thus, it is a fairly complex compensating
procedure.

1.46 1.50 c, kmis Uy kmifs
(a) - (b)
1T 1.47
ol B
4.45
z, km 10 30 mode number

Figure 4.2, Surface-duct waveguide: (a) vertical sound speed profile; (b) mode group velocity
dependence on' mode number. (Adapted from [50].)

Individual modes cannot always be resolved in real situations. If the array is
capable of distinguishing only groups of modes in the range AnAm, spatial resolution
deteriorates, because the inter-modal dispersion within a particular group will now
be a factor. If Ax is greater than the mode interference scale, the received signal has
the form

n+Ar;m+Am

(pP@nP = 3 1407 [4m)|* 1 0).

nm

Let us consider a surface-duct channel with a linear depth dependence of the
sound speed: C(z)=c+a=, where =0.017 5™ and ¢=1.47 km/s. The emergence angle
of the Brillouin wave, 8, (z)=cos™'[x,/k(z)], at the depth = depends on the group velocity
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v, (see Fig. 4.3). A vertical radiating array situated near the surface (=, =100 m) with
the horizontally directed beampattern of the width 8, generates a group of the low-

order modes in this waveguide. A group of the higher-order modes can be
distinguished by placing an analogous receiving array at the greater depth of 4 km for
the inhomogeneity-loaded waveguide. The deviation of the group velocities within
each group is about 2 m/s for 8,=0.1 (in radian), and the difference in group
velocities between groups is about 20 m/s (see Fig. 4.3). Then Ax ~0 ta. The curves
of 6,(v,) show that the resolution can be substantially improved by varying the

directivity of the array.

6, rad
0.3 3
0.2|-

Figure 4.3. Angle of emergence of a Brillouin | g 4

wave versus mode group velocity at various

depths (channel with a linear profile): 1) z=0.1 . I

km, 2) z=2 km, 3) z=4 km. (Adapted from 1.48 1.49

[501.) n, km/s

, In many cases, a mode group can be separated by combining natural and
artificial shadow zones. The natural shadow zone is created by depth-wise spacing
of the arrays, and the artificial shadow zone depends on the directivity of arrays. It
is more favorable from a practical point of view to use small arrays and to place them
in "deep" mode shadow zones. At least three cases of the existence of well-developed
natural mode shadow zones can be indicated: 1) when the radiator is situated on a
shelf, and the receiver is in deep water near the bottom; 2) when the radiator and the
receiver are situated in adjacent waveguides; 3) whern the radiator and the receiver are
situated near large bottom irregularities. In the first case only the lowest modes are
excited efficicntly, because the modes are cut off by the shelf wedge, and the receiver
detects predominantly the higher modes, which are generated as the signal propagates
in the range-dependent waveguide. In the second case the modal shadow zone is
created by the generation of modes localized in one waveguide and the reception of
modes localized in the other waveguide (ihe adjacent region of the waveguides can
be diagnosed in this case). In the third case, spatial selection is induced by large
underwater elevations through the same mechanism as in the shelf wedge zone.

If the analysis is carried out for the small perturbation approximaticn, the
horizontal range under investigation is limited by: a_, «d, where 4 is the total

characteristic scattering diameter [8, 67]. The above-described diagnostic technique
is applicable not only in waveguides of various kinds, but also in any multimode
media, in which inhomogeneities induce energy redistribution in the modal spectrum.
The feasibility of the diagnostics of inhomogeneities by analyzing reverberation
signals in the "transillumination" scheme has been investigated previously [127],
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where it has been proposed that the angular dependence of the sound scattering
coefficient for the rough ocean surface is determined from the measured values of the
intensity before reverberation onsets.

It has been shown [46, 50] that the distribution of the parameters of oceanic
inhomogeneities along an acoustic path can be reconstructed by the “strobing pulse
method,” if compact mode groups widely spaced in the modal spectrum are generated
and received. The statistically averaged intensity of the recorded signal, {|p(#)|%), as
a function of the time for the excitation of the nth mode and reception of the mth
mode carries the information about the matrix lo,,(x)I characterizing the

inhomogeneities as a function of their positions, x,, along the path:
( l2> - 2 21 ¢ 2
1Pm()i) = %IAS("M |4 g(m)| 6, (xg) -

The value of the matrix element, o, , indicates the amount by which the intensity of

the recorded signal (scattered by the zone Ax from the nth into the mth mode) is
smaller than the intensity of the "illuminating” signal for a receiving system with
[ m)|*=14(m)12.

Let us analyze the expressions for o, in order to consider the possibilities of

identifying various types of inhomogeneities and determining their parameters. Since
every horizontal element Ax contains different types of inhomogeneities, including
volume fluctuations of the sound speed (e.g., thermohaline fine structure, random
field of internal waves, turbulence, eic.) and fluctuations of the relief of the rough
ocean surface (wind waves and swell), the matrix | o, corresponding to the element Ax

characterizes the total contribution of all types of inhomogeneities. The existence of
disparities in the spatial and temporal characteristics of the inhomogeneities enables
us to separate the contributions of the individual types of inhomogeneities by
selecting the parameters of the radiating and receiving systems. Of course, it is
necessary in this case to utilize a priori information about the structure of the
correlation function of inhomogeneities. The actual reconstruction of the
inhomogeneities along the propagation path includes the determination of the
quantitative values of the parameters (or some of their combination) describing the
inhomogeneity. As examples, we consider several typical models describing different
types of inhomogeneities.

Volume Inhomogeneities. The following relation has been obtained in [46] for
volume inhomogeneities: '

$,(z)9,(2)9,(=)0,,z,) y

e’

S, (x5) = mfc Ax f fd:ldzz
0
x [dx! B0z, zxexplix (s, 1)1, (4.15)
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where ¢,(z) denotes the vertical eigenfunctions of the waveguide, c(z) is the sound
speed at the depth -, and

B(x'y'z, ) =(0c (xg tx 12,y vy 12,2 ,08¢c(xy—x 12,p-y 12,2,,1))

is the spatial correlation function of the sound speed fluctuations 8c(xy,z.f). We can
specify the spatial correlation function for different types of volume inhomogeneities.

Thermohaline Fine Structure of the Sound Speed. The correlation function for
inhomogeneities of this type can be written approximately in the form \

Bix'y /s*-v:rxz): ((5C)Z>(D1(x "y /)(DZ(:] _Zz)q)3( ZI;ZZJ 5 (4.16)

where d is the thickness of the waveguide subsurface layer in which the
inhomogeneities are concentrated, ((5c)® is the variance of the sound speed
fluctuations, and @,(0,0)=1, ®,(0)=1, ®,(z)=1,0 at z<d and z>d, respectively. It can be
assumed that @, (x/,0)=exp(-x %/17) and d>2(:)=exp(—:2/1:2), where I, and /, are correlation
lengths. For I «q,, ¢2=k*~2,

we have

Pac-x ¥ 4"
0,,,~Tk*Ax [ [ (Bcic)?) exp[ —X—"T—'"—-] f =92 ()02(E). 4.17)
0

Using the WKB approximation for the waveguide eigenfunctions in a channel with
the linear sound speed profile c(z)=c+oz, we obtain [8, 46, 49]:

Gnm(xz) =47tk 2(""2A."C‘I‘/Inm(xz)/[c 29;(0) 93;(0)] > . (4. 1 8)

variations of the sound speed along the path, and 0,(z)=cos™'[x /(2nflc(z))] is the
emergence angle of the Brillouin wave at the depth z. Consequently, the diagnostics
of the fine structure of the sound speed is reduced to determining M, (x,). According
to Eqgs.(4.17) and (4.18), the mairix element at the fixed angles 6, and 6_ attains a
maximum for the frequency f, ~2c/[nl(82-62)]. We can therefore estimate the
horizontal correlation radius /, from the maximum of o, by varying the radiation
frequency, f. Additional a priori information is required to estimate the rest of
parameters. : o :

We estimate the value of s, for 62(0)=0.03, 62(0)=10", 7=0.2 s, 0=0.017 5",
and ¢=1.47 km/s, which corresporids to'the spatial resolution Ax=50 km. For the
typical values /=100 m, /=1 m, =500 m, {(5c/c)>=10"* for the frequency /=200 Hz,
we have o, =107, :

where M, (x;)= (6c/cy) I d exp[ —lf(vc" -x,.)4/4] characterizes the “power” of fine-structure
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Turbulence. The spectrum of the correlation function has the form of a power law in
this case [8]. The correlation function, Eq. (4.16), can also be used for anisotropic
turbulence. We consider a generalized power-law spectrum of horizontally isotropic
turbulence [46]: :

O, (k, k) =R, (k] k)Y (kg +k k)P expl -k +k K]
and (4.19)
O, (k) =R,k (oG +k ) expl k2],

where kk,, p>r+1, ki, , and v>u+1. The coefficients R, and R, are determined by
the normalization conditions for @, and ®,. We obtain the following equation for the
matrix element, o_, from Egs. (4.15), (4.16) and (4.19) for kj«(x,—x,)*:

6, =2k 2Ax (Bl ky/(k, K, )| 27 by exp[-(x, K, )2k 2]

{T(1/2)¥ [%% - -Km)z/kfl/ T(r e )®[r+1,r+2-p (kR

[[E.0,6) )00, Bt —:z)cbg( d f) , (420)
0

where T(-) is the gamma function and ¥(-) is a confluent hypergeometric function.
We obtain Eq. (4.18) for ¢, in a channel with the linear sound speed profile with

M, in the form

2 v-2p-1
M, =2 2 E‘i) d { U exp[—(qn—qm)zhcz,]
T\ ¢ k<, 9,74,

K, pv-2u-1
9,*qp

+

exp[-(a, 4, R, @21)

where
R, =(r+1)(p-r-DE-r)(u+ Dv-p-Dk/(c,~kx N> 2 Y [p(2p-2r-1)],

when k »{x,-x, |k, and

R, =(r+D)(p-r-D(u+)v-p-1/Q2r+)(2p-2r-1)v],
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when kplx,-x,|, dvlg,-¢,|", and |g,-¢,|»,. Thus, the turbulence diagnostics are
also reducible to the determination of the power of the turbulent layer, M., which,
in turn, is determined by the set of parameters 4, (5c/c)?, ks ps vy v, 1, X, (the
dependence on x, is weak, because usually « »g,+g,). It is virtually impossible to
estimate the quantities o, (@c/c)), k,, and «, themselves rather than some

combination of them without drawing on additional information. It is readily
discerned from Eqs.(4.18) and (4.21) that the parameters (v-p) and (v-u+p-r) can be
determined in principle from measurements of the frequency dependence o .00 atthe

fixed angles 6, and 6,

A quantltatlve estimation of scattermg matrix for the typical values r=0,
=11/6, v=11/6, n= - ¥4 [46], k,=0.1m ", x,=0.1 m !, d=500 m, {(5c/c)?=10", and

the same parameters of the field and waveguide as above, yields o, ~4-10". For
k=107 m™" and (8c/c))=10"®, we haveo,, = 6107,

Internal Waves. Using the Garrett-Munk model for the spatial spectrum of the sound
speed correlation functlon [67], we obtain the matrix element o, in the form [46]:

3
z,+z
N 12]
1G4 (
o =2 m’(zmxffd_d_——-—z—

e 0,(2)9,(2))0,(z)9,,(z,)x

] .

f / { w7 +(0c, K, )? cosx(z, -z, )dk dic ‘ | (4.22)

e % +(1c, - 1c,)2+ _wf HK2+ ”‘ZNZ(_)

N%2) b2N]

where N(z) is the Brunt-Viisila frequency, N,=MN(0), @, is the inertial frequency, (1)

is the statistical mean-squared relative ﬂuctuatlon of the sound speed near the ocean
surface, and

b= f d=[NE)IN,), z=(z,+2,)02.

On the basis of experimental data, Munk and Zachariasen take j,=3 [8]. It is evident

from Eq. (4.22) that the diagnostic problem in this case is reduced to the
determination of the parameter (i), from which the energy density of internal waves

on unit area is determined uniquely.
Let us estimate the expected value of o, quantitatively for a bilinear channel

c(z)=c+a|z-b|. In the WKB approximation for the waveguide eigenfunctions for
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9 » 0>

ne

(0/N,), we arrive at

J.02Ax ik
%ea%y%%ﬁ

=32n¢§%

Using the same values of 6., 6,, «, and 7 (and, accordingly, Ax) as above at a
frequency =200 Hz, along with u)=10", ©/N,=102 and 5=100 m, we obtain
o, =310, If 62=0.1 and 7=0.5 s (we have exactly the same spatial resolution Ax=50
km in this case), the information signal is attenuated considerably: ¢, ~5.4-10"¢,

Ocean Waves. For this type of irregulariﬁes [46], we arrive at
6, (xp) =o' (0)]2[<P A0 f dk! W(x, -,k '), (4.23)

where W is the spatial spectrum of the waves.

Wind Waves. All the characteristics of fully developed wind waves are uniquely
determined by the wind velocity ¥ and wind direction ¥, (where ¥, is the angle

between the direction of the wind and the horizontal axis) for a specified structure of
the spatial spectrum. Assuming uniform angular distribution of the energy in the
spectrum within the angular interval = and taking into account the relation
o,.{(¥)=0,(%,)=0,(n-¥,]), we obtain the Pierson-Moskowitz (PM) sea-surface

nm

wind spectrum [121] for f<0.27gc/(V?|6;-6}]) in the form
Gnm(x;.) =0.1744,,, [(p/n(O)(p/ m(O)]zAxV s(x,)k “2g 73, (4.24)

where 4,,,~8.1 - 10® and g=9.8 m/s® (the acceleration of gravity). Consequently, the
wind velocity distribution V(x,) along the acoustic path can be reconstructed
according to Eq. (4.24).

In a channel with a linear speed profile, [¢’, (0)]2=[-5 (p"()

P|,_,~2ak¥c, the

quarmtatlve estimate is o, ,~3-10" at the frequency /=200 Hz for =10 m/s and
Ax=50 km.

Swell. We consider the spectrum of swell in the form of a narrowbeam wave [46]:

bl ot
£ 'S 2
Wik, k)—an fd\y fdQ (kx—%cosw]x
[0}

ST 2
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2 2 2
X 8[ ky—gsin\y] +8 [ kx+Q—c05\V] 3 ( ky+£sin\y] ],, (4.25)
g . g g :

where H is the rms height of the swell, v, is the angle between the direction of
propagation of the swell and the x axis, o, is the swell frequency, Ay«1 rad is the
width of the angular spectrum of the swell, and Aw«wy is the width of its frequency
spectrum. We obtain the following equation for o, from Eqgs. (4.23) and (4.25):

wrht ot

2
HAx
O = [0/, (O, OF [ dy [ dQx
2
4k*AyAm Ay Ao
W %7

X{é[ K"~Km—&2cosw] + 8( Kn"Km'f&zCOS\;I] I (4.26)
g 4 . .

According to Eq. (4.26), the matrix element o, =0 for |k,-«,|=kscosy,, where
ky=wi/g is the wavenumber. Consequently, efficient energy transfer between widely
separated modes is possible only for certain angles v, (closely spaced modes interact
at y,~n/2). Inthe case |« -« | =kscosy,: '

2 TH*Ax

6,,= (90", (O] —
4k*k

B,

S
where

B =~ (Aylsiny,|)! for 2Am/mAys |tamy | <cotAy,

B= (A cosyJag)™ for tanAy<|tany | <[2Am/oAy],
B =QogAo cosy)?/Ay for yg~0,2A0/<Ayi2,

B=(2Awm fcosy o)™ for y,~0,280/0Ay/2.

It is evident from these equations that the individual swell parameters cannot be
determined by varying either the reception angle, 8,, or the frequency, f, unless

additional information is available. The entire diagnostic problem is reducible to the
determination of the quantities H?p/kg and kgcosy.

A numerical estimation of o, for the same waveguide parameters and duration
of the sensing pulse as in the preceding examples at a frequency of 200 Hz, k,=0.04
m’, y=72°, Ay=0.1°, Aw/wg=0.1, and H=0.5 m gives the value ¢, =10".
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The number of elements of the matrix |o,, | that must be measured in general

for the reconstruction of oceanographic information about inhomogeneities is
determined by the number of inhomogeneity parameters. If the inhomogeneities can
be described by a model with a few parameters, it is sufficient to measure just one or
two elements of o,,,. An example of such a situation is sea wind, for which it suffices

to estimate the wind velocity together with the background field of internal waves,
whose characterization can be limited to the estimation of the energy density of
internal waves on unit area of the ocean surface. If several parameters must be
estimated, it is necessary to measure the maximum possible number of elements of
S, to vary frequency, and to use a priori information about inhomogeneities.

It follows from estimates obtained at the frequency of 200 Hz that the most
- significant contribution to the resultant value, o, is from wind waves in the surface-

duct sound charnel and from the random field of internal waves in the deep-axis
channel. :

Figure 4.4. Matrix element o, versus Log(Cnm) 3b .5
frequency at fixed angles 6,21 for

87~1073, Ax=50, and various types of
inhomogeneities. 1) Background field of internal
waves: (a) 62~0.03; (b) 62~0.1. 2)
Thermohaline fine structure: (a) 62~0.03; (b) | -s|
87~0.1. 3) Turbulence: (a)
ky~10"'m ™, <(3clc)?>~ 10", 62~0.03 ; (b) sl
k,=107m 1, <(8c/c)*>~107%, 62~0.03 . 4) Wind
waves: (a) V=20m/s; (b) V=10 m/s; (c) f, Hz
V=5mls. 5) Swell. (Adapted from [46].) T 50 100 ERETYT

-4l

These quantitative estimates have been calculated at a fixed frequency of the
sensing pulse. A variation of the frequency can change the relative contributions of
the individual types of inhomogeneities to the scattered signal. The latter result is
essentially a consequence of differences in the forms of the spatial spectra of
inhomogeneities. To confirm this fact, the frequency dependence of o, for different
types of inhomogeneities is plotted in Fig. 4.4. Eqs. (4.18), (4.21), (4.22), and (4.24)
have been used for this purpose. The required functions for the above-indicated
models of the inhomogeneity spectrum are shown in Fig. 4.4. It is evident from a
comparison of the curves in the figure that the frequency range above 100 Hz can be
discerned as the range, in which the predominant influence of internal waves in a mild
wind (or in a deep-axis channel) is expected for 63=3- 102, Turbulence clearly
provides the greatest contribution to ¢, in the range below 100 Hz. The relative

contribution of volume inhomogeneities is greatly suppressed for the larget'épacillg
between the radiated and received modal spectra (62=0.1). Ina strong wind (=10

m/s), wind waves mask other types of inhomogeneities in a channel with a linear
sound speed profile. '
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The identification of individual types of inhomogeneities requires an
optimization of the parameters of the radiating and receiving systems. Optimization
mainly entails a search for the optimum angles of radiation 8, and reception8, , and
the optimum sensing frequency. The possibility of suppressing the influence of wind
waves and swell for better estimation of volume inhomogeneity parameters is offered
by the use of complex signals. Indeed, the coherence time is t,=1 s (t,~ V'/g for wind

waves), whereas the coherence time for volume inhomogeneities is 1,,=10° - 10*s.
For the complex sensing pulse of the duration 7, (the spatial resolution Ax is

determined by the duration of the time-compressed signal after matched filtering,
T«T,) such that 1,«7,<1,, , the signal energy scattered from wind waves decreases

by 1,/T,, in comparison with the signal scattered from volume inhomogeneities. This

means that information about volume inhomogeneities can still be extracted when
strong wind waves are present in the investigated region. The sensing sigral must be
sufficiently narrowband, so that the pulse spreading due to intra-modal frequency
dispersion can be neglected. Otherwise, it is necessary to use special filters to
compensate intra-modal frequency dispersion.

4

4.3.2 Ray Differential Oceah Acoustic Tomography

The differential method, discussed in Section 4.3.1, is based on the modal
approach [2, 50], which allows one to use the signal from a single accustic path to
find the spatial distribution along the path for the statistical ‘parameters of
inhomogeneities with horizontal scales smaller than synoptic ones. In this differential
method, the reconstruction is performed from the intensity of the scattered sound
field. To apply this technique, one needs to emit and receive normal waves
substantially separated in the modal spectrum in order to separate the scattered signal
from the more -intense background direct field. Intermode dispersion causes a
difference in the time delay of signals formed by scatterers situated in different parts
of the acoustic path. This distinction allows one to localize the inhomogeneities by
time gating. : ' : ‘

Later we shall discuss the ray approach in the differential method, which may
be more effective when intermode dispersion is not substantial, but the separation of
short pulse signals into pulses corresponding to different rays is important [63, 128].
By analogy with the modal approach [2, 50], the emission and reception of rays with
significantly different mean propagation velocities will permit one to localize
inhomogeneities. : ' '

- Let us consider an underwater acoustic waveguide with the sound speed field
c(r,)=c(r)+dc(r,t), where |dc|«c, and r=(xy:) in the Cartesian coordinates. A
quasi-harmonic sound source located at the point ro=(xgy,=0,29) = (Rey,=0), where
R=(x2), radiates a pulse F(¢)exp[in,#] of the duration T. The bandwidth of the signal
is Af«oy/2n. The receiving system is at the point r,=(x,v,=0.z,)=(R,»,=0). The
received signal undergoes matched filtering, i.e., it is convolved with the reference
signal, F(t)explio,/].
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We may assume that sound speed fluctuations, $c, are stationary and
quasi-uniform over the space variables, and (§¢)=0. We suppose that inhomogeneities
of the sound speed are rather small, L<), MaAf/c]?, and vary sufficiently slowly cver
time, i.e., L«ct., where a=|x,-xg| is the length of the acoustic path, A is the
wavelength of sound at the frequency w,, L is the horizontal correlation radius of &,
and . is the temporal correlation radius of sc.

Let us derive a relationship between the intensity of the scattered pulse and the
spectrum of the correlation function of sound speed fluctuations. The acoustic field
will be treated in the ray approximation. '

In determining the basic relations, we assume that the dependence of the sound
speed c(r) on x and y in the reference waveguide is sufficiently smooth, and the
effects of horizontal refraction aie negligible. It is known [67] that for large-scale
inhomogeneities, the scattering angles are small. Thus, the region that mostly forms
the scattered field in the horizontal plane is concentrated closely to the straight line
connecting the source and the receiver. Therefore, we may assume
c(r)=c(Ry=0)=c(R). ’

The single-scattered component of sound field will be considered in the
derivation. We denote the scattered field as pi(r.0expliog]. Applying the perturbation

theory to the wave equation, we obtain [67]

P> —-21_ [HHOEr [do'elr' o) pyr,0,-0)Glrr 0y +w), (4.27)
T
where
\ “ elrt .
(;o((rfa;))) = f [ ;(f(rr,))] exp(-iddr, h=w,lc(r),.

—e

g(r,f) = (c(rie(r))*-1= -—280(r,t)/c(r),

- py(r1) is the sound field without scatterers (illuminating field for 5¢=0), and G¢,r',0)

is the Green’s function in the reference waveguide at the particular frequency. The
frequency spectrum of the complex amplitude of the received signal in the reference
guide is py(r,0) = P F(0)G(r,rg,0,+0), Where

F(o) =}F(t) exp(-iot t,

Py =8npcE

and
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E=} | F()|%dt

—o0

is the total energy of the emitted pulse. To simplify the derivation, we shall assume

f |F(1){%dt=1. After matched filtering, the single-scattered acoustic field takes the

form:
P (rorstQ) = -21_ [dop\(r0)F (@-Q)e™ (4.28)
T .

Substituting Eq. (4.27) into Eq. (4.28), we obtain the intensity of the single-scattered
signal: :

)7 y
I(xQ) = (|(>l(rR,rs,:,Q|2>= (_2%); f [drid’r, fdmhz(rl ()

x B (r r0)exp(~iw) [do Flo,) F (o, +o-Q)explin,t}x
ASES) 110y 1 1

X G(r,,1e,0,+0))G *(7),7 5,0, +0,) f do,F *(@,)F(0,+0-Q)exp[ -iw,T]*

X G(r,1y,0,+ @, +0)G *(7, 7,0, +6,), (429
where B(rr'1)=(e(r,t +t2)e(r’1'-1/2)) is the correlation function of the sound speed
inhomogeneities. ‘

The Fourier transform of the Green’s function with respect to the spatial
variable y is

; :L“- . oy, k)
G(r,r,m) - Ldk G(R:,Ro,k,a))e | s

where &, =‘a)0/c0, and c, is the sound speed on the channel axis. If 4()=A(R), then in
the ray approximation G becomes

G(R,Ro,k,m) =y U(R Ry kn,) exp[-wr(R.Rokn)], ‘ (4.30)
Y - .

where
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VRRykn) = [ R)-K)ds'
R,-

is the eikonal, n, is @ unit vector along the ray j , and R, is the trajectory of the jth ray

in the two-dimensional space (x,z). In Eq. (4.30) the summation is over all rays
emerging from the point R, and incident in the point R.

For large-scale inhomogeneities, an acoustic pulse propagates from source to
scatterer and from scatterer to receiver in essentially the same vertical plane that
contains both the source and the receiver {2]. Therefore, the Green function in Eq
(4.29) is contributed to mostly by the components of G with rather small |, i.e,
|k| «h,. Then

g (1Y

where

{(RRyn)) = [ds'IeR")

L

is the delay along the jth ray. Asa resulf, the Green’s function can be approximated
by

G(r,rp,0) = [/27ch(x -x,)]"2x

o e ): U(R,R,k=0,n,) expl -iot (R,Ry,n)] (4.31)

Denoting the ray intensity by I'(R,R,n) = |U(R.R,k=C,n,)|?, we obtain

G(r) 7 )G (g, 0,)= [4n*h} (o, =x,) (v, =x )] V72

00’1 Vo) o(yz ¥
X exp|- 2( 1'xo) 2(x2 =) E F(R Ro,n)
o (0,+0,) 5
x pl,( a))t(RRo,n) ip 3Rl (4.32)

where R=(R,+R,)/2 and p=R,-R,. Deriving (4.32), we have neglected the interference

of different rays (plane waves) [129] and assumed that p is small. Substituting (4.32)
into (4.29) and defining the uncertainty function of the emitted signal as
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- 1 0 ’ oo ioT
FyQ) = - [ doF (0)F *(0-Q)e ™",
we readily obtain

P h(R))“ . .
It,Q) = ;03; ,X,: f !(—57-[— d*RT(Rn)T(Rn)

f dolW (R,-0,0tJoR+3HOR),0) |F (t-1,-t0-Q)|2, (4.33)

where

W (Ri0)= f [ f " dPpdiB(R+p/2.y,=0;R-p/2y,=00)e L

ts(,)(R,n) =1 (R,R's(,);n) s
and
I“S(r)(R,n) =1’s(,)(R,R,n) .

Equation (4.33) relates the intensity /(z,Q) to the local spectrum of the
correiation function W, of sound speed inhomogeneities. The vectors o,(31;/8R) and -w,(81/0R)

are the wave vectors of the incident and scattered plane waves. . .
Thus, in the ray representation, the problem of reconstruction is reduced to

solving the integral equation (4.33) and reconstructing the spatial distribution of the

oceanic inhomogeneity characteristics (dependence of the local spectrum W, upon R).

It is important to note that the reconstructed characteristics may be not only the
spectrum 17,, but also a certain combination of paramieters describing the spectrum

model (some examples of several standard models of oceanic inhomogeneities are
discussed in [50]). Analyzing the frequency dependence of /(Q), we can determine
the frequency characteristics of the spectrum (temporal variability of
inhomogeneities). The solution of this problem by using the ray approach does not
differ noticeably from the modal approach [18].

A substantial peculiarity of the ray representatxon is revealed when locahzmg
inhomogeneities in the spatial domain. We will examine this problem in more detail.
Consider the ray representation in the case of static, frozen inhomogeneities when
W(rx,0) = 2nW(rK)5(c), where W(rx) is the local spectrum of the spatial correlation
function B (r+p/2,y,=0; 7-p/2, y,=0; t=0). Then we have
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1) = 2_’3‘"3 ¥ [[TR2RT (Rt ) T, (Ron )
‘0 aij 8

X(Fy(t-ts-1 Q) W (R;-0,01,/0R- 0,01 /OR). (4.34)

It follows from Eq. (4.34) that for a fixed delay, 1, the intensity of the scattered
field is controlled by the elements of the scattering volume, §,, with satisfying the
following two conditions: 1) |t-£;-1 | s7,/2, where 1, is the duration of the probing
pulse after matched filtering and 2) the elements represent intersection regions for ray
trajectories emerging from the receiver.

The first condition allows one to localize the scatterers from the variation in
the temporal delays of short pulses traveling along different ray paths. The procedure
is quite similar to the modal approach of the differential method [2]. Indeed, we
assume a regular waveguide and introduce the mean pulse propagation speed along
the ray ¥(x) =D(X)/T(x), where y is the ray grazing angle at the channel axis, D(y) is the
length of the ray cycle, and T'(y) is the delay over the cycle length. Inhomogeneities,
located at a distance x,, produce the scattered field at the receiver location in a time

interval defined by <, =x,/V,+(a-x,)/V1,/2, where ¥, and v, are the mean velocities of
rays i and ;. ‘

The relationship between / and t can be determined by the dependence of the
spectrum, W, on the coordinate, x_. The horizontal resolution for rays i and j is
Ax=1, W V/\V,-V]. The second condition gives us additional opportunities, compared
to the modal approach, for localizing the scatterers both in the horizontal and the
vertical planes. This fact substantially increases the efficiency of the reconstruction
method.

The position and dimensions of the region that gives the main contribution to
the integral (4.34), and the opportunity to extract a relatively weak scattered pulse
from the intense illuminating background depend on the parameters of the underwater
waveguide, on the positions of the source and the receiver, and on the influence of the
ocean seafloor. A numerical simulation of the spatial-temporal structure of the
illuminating and scattered signals and an analysis of the possibility of localizing the
inhomogeneities along the path under different conditions will be discussed in the
next section. :

44 PARAMETERS OF DIFFRACTION OCEAN ACOUSTIC
TOMOGRAPHY SYSTEMS

In homogeneous media the energy coupling between source and receiver and
the signal propagation time can be easily predicted. In smoothly inhomogeneocus -
environment, however, the acoustic energy propagates along more complex curved
trajectories (rays), so that such prediction becomes more difficult. Rays form
coupling channels with the complex structure in natural waveguides (such as the
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ocean and the atmosphere) [8, 72, 129]. Complicated spatial structure of the
propagation channels is displayed also in the temporal characteristics of received
signals. An initially single radiated pulse splits into a series of pulses at the receiver
location after propagating through an inhomogeneous medium due to different path
lengths. Such pulses can be either overlapping or separately resolved, so that
received signals form a complex temporal distribution.

This phenomerion plays an important role in a choice of the algorithm for the
reconstruction of the parameters of oceanic inhemogeneities by tomographic
monitoring systems in atmospheric and oceanic waveguides [76, 130]. Usually the
locations of sources and receivers are determined by the goals and design of the
particular monitoring system. The problem of choosing these locations becomes
more complex in weakly inhomogeneous refracting media. The energetically
coupling channels have more complicated structures in this case, and the locations of
sources and receivers should be chosen taking this fact into account. The shadow
zones (both for the source and for the receiver) existing in the ocean provides a good
example confirming this conclusion. Localized inhomogeneities, situated in shadow
zones, do not influence the structure of received signals. Thus, one can assume that
the an observation area of imaging system is nonuniform. The knowledge of the
propagation path losses, characterizing atmospheric or oceanic waveguides, allows
for the estimation of the performance abilities of the imaging system for the given
observation area [131, 132]. At the same time, the distribution of such loss,
calculated for various source and receiver locations, must be combined to receive the
detailed information about the observation area [133]. However, the complexity of
such estimation depends on the complexity of the tomographic observation systems
[35, 48, 75]. It is even more difficult to describe the connection between the spatial
structure of the observation area and the temporal structure of received signals [73,
77]. The "differential" tomography, which does not consider the disturbarnices from
random inhomogeneities, and the Dark Field Method for oceanic waveguides [2, 78]
give estimations of the spatial structure in the observation area by processing
responses from several receivers and sources.

The development of acoustic imaging systems requires the sclution of the -
problem of the optimal choice of system parameters. The synthesis and the analysis
of the acoustic field structure in a waveguide are necessary for designing optimal
configurations of emitting and receiving systems, focusing the energy at the given
region of the medium, and choosing the processing algorithm that will provide the
high spatial resolution. If the size of the inhomogeneity in the refractive waveguide
is large enough in comparison with the wavelength, then the optimal observation is
along the direction of radiated signal. It is necessary o solve the interna! diffraction
problem for inhomogeneities in the inhomogeneous layered wavegnide in order to
estimate the performance abilities of tomographic systems [29]. The optimal
disposition of scurces and receivers is sought based cn the results obtained.

Methods for the optimal choice of the parameters of acoustic imaging systems
in refractive layered waveguides are discussed in the next sections. In particular,
some optimization problems are considered and classified. The calculation of the
field scattered by inhomogeneities in the refractive waveguides is presented also. The
transferal characteristics of inhomogeneous media are defined and their computed
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spatial distributions are analyzed. The method and results of optimizing the model
of imaging system are presented. The limitations, the possible applications, and the
development of proposed methods are discussed in the conclusion.

4.4.1 The Problem of Scattering in Smoothly Inbomogeneous Layered
Waveguides .

As noted above, the sensitivity of the structure of the coupling energy channel
to variations of the location and parameters of the inhomogeneity should be
estimated in order to analyze the efficiency of the acoustic imaging system. The
spatial distribution of transferal characteristics can be studied in this case. Different
regions of the observation area can be tested by using simulated objects appropriately
describing the influence of inhomogeneity. The scattered field calculation can be
based on the geometrical theory of diffraction (GTD) [8, 72, 129] implying the ray
representation of acoustic field. The proposed methods can be generalized for the
modal approximation [72].

Let the point source S, the point receiver R, and the firmly localized
inhomogeneity P (its size is less than the scale of field variation) be placed in a
smoothly inhomogeneous medium. The total received field can be expressed in the
following way:

S, - S,
= " -1 " el RV S
u=y A, e "k > Aye TP
n

ny

where the first sum, corresponding to u,, describes the field in the geometrical optics
approximation (4, is the amplitude, S, is the phase, and % is the wave number). This

group includes both the ordinary waves, propagating along the curved trajectories and
the waves, reflected from the inhomogeneity. The second term « describes

diffraction effects of the order of k', There are two subgroup in this group. The first
one describes the diffraction effects on the ordinary wave (the transverse amplitude
diffusion, the diffraction at the waveguide boundaries, etc.). The second one is
associated with the diffraction on the localized inhomogeneity and includes the
diffraction waves of different types {8, 72, 129].

4.4.2 The Problem of Ray Selection

It is necessary to trace curved trajectories (rays) to calculate the field at the
receiver locations. Tracing all rays is often non-effective, because it requires the
large amount of numerical calculations for small-scale inhomogeneities.
Approximate estimations have shown that the number of rays grows proportionally
to D/L, where D is the length of the propagation path and L is the scale of the
inhomogeneity.

Special methods of focusing are more effective for small-size inhornogeneities.
One of these methods is described below. Outside the inhomogeneity, the ray follows
the rules of geometrical optics (Fermat's principle). Thus, the problem of ray aiming
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consists of selecting pairs of rays that couple the source pointS with the receiver point’
R with the point intermediate point on the surface of the scatterer. These pairs must
satisfy the conjugation conditions at the given point of the surface. The conjugation
conditions are determined by the ray type. L .
The conjugation condition for the wave of type I (see Fig. 4.5), reflected from
the inhomogeneity surface, is [22]: . -

t .+t ' ’ :
N= -_S_LT, ‘ o (4.35)
[2(1+eg,t )] , v 7
where ¢, » are unit vectors along incident, S, and reflected, R, rays at the poirit of

reflection, N is the external normal at the reflection point, and (,.) is the scalar
product of two vectors. ‘ '

Figure 4.5. Positions of the source, S, receiver, R, and scatterer, P. Rays connecting S and R in
scattering: [ - reflected, /I -refracted, /If and /V - diffracted, and V- creeping. (Adapted from

[221)
The singly refracted wave, II in Fig. 4.5, is characterized by the following set
of conditions [72, 133]: _ . : .
N, = (g t-g . N, = (gt g, o @36)
i nl 1 1 ﬂ‘ 1 1 2 '12 2 12 "2 2 12

where N, , are the external normals of the surface at the incident and exit peints, n,,

are ratios of refractive indexes, calculated at the ray incident and leaving points, |...| is
a norm of a vector, the vectors ¢, , characterize an internal structure of the scattering

object in the sense of an outward pointing unit vectors along the internal paths. The
conditions for wave IV, originiated in the process of scattering from the edge, are:

lefy) +lety) =ledgrt ) =0, . o 437

where e is a unit vector tangential to the edge at the ray contact point, )
The conditions for creeping wave, V, diffracted on the surface of smooth body,
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are expressed as follows:
(Nit)=0, (Nz,)20, (Nitgt,i=0,

where N is the external normal to the surface at the contact point, {,.,.) is the scalar
triple product. The normal at the creeping point can be easily found from this
formula:

N= -ttt )+t MLt I, (4.38)

where [.,.] denotes the vector product. One can draw the normal at the point of
contact with the surface and limit the set of points of the surface, where the given type
wave can appear. If the ray unit vectors ;, are known, then one can determine the

normal direction in the ray incident point for the wave of type I or IV. In the case of
the refracted wave II, the normals N, , can be found from Eqs. (4.36) after excluding

the vectors ¢,,. However, additional information about the internal inhomogeneity

structure is required. Eq. (4.37) limits the set of permissible edge unit vectors, e, and,
therefore, the set of points, from which wave Il can originate and reach a receiver.
Analogously, the "sharp" points of the surface (type III), where the conjugation
conditions are fulfilled, can be easily selected. The numerical solution of the problem
can essentially be accelerated by restricting the set of points where the given types of
waves can be originated. Then, it is enough to focus the imaging system at the
suspicious points and check the conjugation conditions for the given pair of rays.
However, there is no universal algorithm of a priori determination of the unit vectors ¢, ,
at the ray incident point for arbitrary inhomogeneous media and localized
inhomogeneities. Nevertheless, these unit vectors can be approximated by the
directions, #g,, connecting the points S and R with an a priori fixed point P* of the
inhomogeneity. This approach is suitable if the size of the inhomogeneity is
essentially less than the scale of field variations near the inhomogeneity. These
conditions are realized for inhomogeneities, placed far from the ray caustic surfaces
and waveguide boundaries. The details of the application of the mentioned
approximation are analyzed in [129]. ’

Thus, the focusing on the inhomogeneity can be implemented by the following
iterative procedure: 1) tracing rays, coupling the points SR with the given
inhomogeneity point P*; 2) determining the unit vectors f;, at this point; 3)
searching the approximated normal (or the direction e*) at the contact point, based
on tg,; 4) selecting the points of the surface with the resulting normals; 5) aiming at
the selected points and checking the required conditions for each pair of rays. The
parameters of determined rays become the initial parameters for the next step of the
iterative procedure. . . , ‘

" As an example, let us consider aiming at points on the surface of a small
ellipsoid. The interior of the ellipsoid is assumed to be acoustically homogeneous:
‘m=n,=n, q,=-q,. The center of the ellipsoid, chosen as P*, is the origin of the
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Cartesian coordinate system. The radius vector of an arbitrary point of the ellipsoid
can be expressed through the coordinates of the normal N at this point:

r=g(N) = (@®N i+bN j+c*N k) (@®N] +b N +c2N )2,

where i, j, k are the unit vectors of the Cartesian coordinate system, (a, b, ¢) are the
lengths of the ellipsoid semi-axes defining the ellipsoid size. Let the unit vectors of
rays reaching the point P* be t,. Then, one can find the point of the surface,

corresponding to the reflected wave from formula (4.35):
ro=g (-t 21+ L5t D)),

The creeping point of the diffracted ray is obtained from Eq. (4.38):
rg=g (- (DUt 2 N5t R

To obtain points, corresponding to the refracted ray, we should augment system
(4.36) by the following relation:

g(NZ\—g(Nl)

B TEYY e, Ny.
PEART

This expression relates the direction between two arbitrary points on the ellipsoid
surface to the normals N, N,. Finally, we get the system of equations:

N, II%t;—F(NI,NZ)]I . %t;—F(N,,Nz),

; 1 *
NZII;tR-F(N NI ——tR F(N N)

to determine the incident and output points for the refracted rays: r,=gN, ).

The numerical simulation has been carried out for the bi-linear oceanic
waveguide and localized inhomogeneity of the ellipsoid shape. It has shown that the
iterative process converges to the solution with geometrical speed, if the searched ray
exists. The algorithm becomes circular, if there is no solution. The computational
time for the focusing procedure considerably decreases in comparison with a direct
check of all surface mesh points when the ellipsoid size decreases.

4.4.3 Calculating Field Amplitude
The next step in calculating the diffracted field is the determinations of the

amplitudes of waves propagatmg along rays [22]. In accordance with GTD {8, 129]
these amplitudes are given by the following formula:
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1

T

where 4, is the amplitude of the incident wave, J is the transformation Jacobian,
which is proportional to the area of the cross-section of the ray tube, transforming the
energy from the scattering point to the receiver point, S() is the diffraction
coefficient. The amplitudes of the refracted and diffracted waves can be presented
in similar manner.

A= A+ St )

z

Figure 4.6. System of ray coordinates for the calculation of field diffracted by smooth -
curvilinear surface. (Adapted from [22].)

As an example, let us consider diffraction at a smooth curved surface in an
horizontally stratified inhomogeneous waveguide (Fig. 4.6). We will assume that the
source S is situated at the origin of the coordinate system. The ray coordinates are
the azimuthal (¢) and polar (0) angles of the ray unit vector and the parameter /,
equal to the propagation length along the ray tc the current point, r(6,9,). This
coordinate system fits the spatial form of the ray, but does not couple with the
surface local curved coordinate system. The ray function, R(M.q,0)=(X.Y,7), describes
the trajectory of the ray, originated at the point M{(xyz) along the direction
g=(cosPeosy, cosBsiny,sinf). We should calculate the partial derivatives of the ray
function to describe the ray tube

)

3z ®
R' =t R’ =(k-11) =—-1},
1 .' ( z)[ oz J ‘
, - (4.39)
3= .
=, R/’l:pey,

Ri‘f: (k-11) 3

where p=yX?+Y?, ¢ is the ray direction at the current point, e,=(-Y,X,0)/p is the unit
vector, orthogenal to the ray plane, = is the vertical coordinate of the point of ray,
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being on the surface p=const (see Fig. 4. 6) Then, the set of the reflected rays is given
by the formula:

r(8,9.0) = 0(8,9)+R(P(8,0), 9(8,9), /-1(8,9)), (4.40)

where 0(8,9)=(0,, 0,)=R(0,t° 1(8,)) is the radius-vector of the ray reflection point

P(8,9).
The intensity of the reflected wave reaching the receiver point is:

N A

—H4|Dl

D={lyrlr’), (4.41)

where W is the power of the omni-directional point source and T is the Fresnel
coefficient at the reflection point. The expression for Jacobian follows from Egs.
(4.39) and (4.40) and has the form of the mixed vector product:

(Y] G 5,00 Y o (g '
D= (fxaz ! ]az ‘(az 2 1 Loz q ’k>+p2e e,e,{)’
290\ oz B q, T g,

(442)

(o ® g k) r
9z P2 “_IJ Loz q J+p,e Lo e'),T),

p1f2+k[f22p1( Py B ¢ " g
- 1 L

where f,~k——t and ty=e,-— t are the tangential unit vectors of the lines of the
n,

intersection of the coordmate planes @=C, and 6=C, and the scattering surface at the
reflection point, and ¢ and g=¢-2n,n are the unit vectors along the incident ray and the
reflected ray, respectively. Based on Weingarten's derivative formulae, one arrives at:

on L9z ® .
=k 0 kllo/ =k Stk Sy ‘kn ky 30 12”‘1291’,
and
an n az(”')
= k0 +k220 =k Stk 1o, K e k, kzpv

where the parametersk;),...k,; can be obtained from the first and second quadratic
forms, describing the scattering surface. Thus, the derivatives in Eq. (4.42) are:

1 ,d, a®
‘l/e=[7'qu(ln o) = ](/—th) -2(k;,m, +k12mz),
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and (4.43)
0y = LU, APl 00E) - 2ty ),

where ;n,=n, S +fn and my=n f,+f, n. Substituting Egs. (4.43) into Egs. (4.41) and
(4.42), one can obtain the intensity at the receiver point. The general expressions are
cumbersome, so we will consider several fairly simple examples.

Scattering by the azimuthally symmetrical surface (by a toroid). For the reflection
from the surface, defined by the equation F(p,z)=0, the vectors n, ¢, ¢, and T are at
the ray plane @=const. Thus, the vectors £, and f, are directed along the principal
directions of surface curvature: k) =-k,, k;=k;=0, ky=-k,=np;', where k, is the

. curvature of the normal intersection of the surface by the ray plane. Substituting the
last expressions in Eq. (4.41), we arrive at: '

0
t (O]
) ELA P o
4n T, 0

The expression confirms the symmetry existing in the problem. On the other hand,
one can derive the asymptotical solution for the rays with small grazing angles, which
corresponds to k, -, from Eqs. (4.41)-(4.43):

s PEPP,

1 1

W 11
"2 0.0, Ik’

8=z

9n

1= |2
9,

(4.44)

Y 8% 8z s :
where F,=cp,/c and F,=¢ep,/ ¢, 3 are factors of the vertical focusing of

rays, reaching the reflection point from the points § and R, respectively. The’
intensity of the incident wave is equal to (W/4m)F,/p}. The Jacobian, J, of the

transformation for the ray tube, connecting the points R and P, equals p;/Fz. Taking

the last two expressions into account, we can express the intensity in Eq. (4.44) as
follows: o

2l
I=] S
inc |J|

where

s2=.‘.|r|%}":l_r{_l_ O (445)
2 9.0(p, +p2)IK|

is analogous to the diffraction coefficient for the reflected wave. Thus, the quantity 52

98




can be called a coefTicient of the reflection from the curved surface.

Scattering by an arbitrary surface in a homogeneous medium. In the homogeneous
medium we have:

x®_ a&® 2% e,

3z ® 2 B g2

Then, Eq. (4.41) can be rewritten as:

1= |r|2W

T+ 20 L3, + L) —:l+kzq”)+4I,zI;Kl , (4.46)
n
where k, is the curvature of the normal intersection of the scattering surface by the
plane, containing the vectors ¢ and g, , is the curvature of the normal intersection
of the scattering surface by the orthogonal plane, X is the Gaussian curvature of the
surface calculated at the reflection point, and /,  are the propagation lengths along the
ray from the points S and R to the reflection point P, respectlvely Taking into
account that the intensity of the incident field equals Wi(4n!?) and the Jacobian, J,

equals I, we arrive at the following form of the reflection coefficient:

k .
82 = T2 44420, 41 W2 +hyg ) +4K]| L. (4.47)
q .

n

Eq. (4.46) was first derived by Fock [129] for the intensity of the wave, feﬂected from
the curvilinear interface between two homogeneous media.

Reﬂectzon  from the surface with Iarge Gaussian curvature. There is an asymptotical
expresswn for the mtens1ty of the wave reflected by a surface with large Gaussian
curvature, i.e., K~=, in an arbitrary stratified medium. The asymptotlcal form follows
from Eqs. (4. 41) (4.43):

' F.
[-rp . Bifa, 1 (4.48)
4n 4pip; 1K1
This shows that the asymptotical formula for the reflection coefficient is:
2 I : (4.49)

KT

Similar expressions can be obtained for the refracted waves [31, 72].
As an example of using the derived expressions, Fig. 4.7 shows the dependence
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of the intensity of the scattered field on the orientation of an ellipsoid placed in a bi-
linear waveguide for the fixed locations of the source and the receiver.

1, dB
-130 |~
150 \L
‘ 1 )
-0

Figure 4.7. The diffracted signal intensity as a function of the ellipsoid orientation in a
horizontal plane. (Adapted from [22].)
L
The procedure has been developed for layered waveguides of refractive type.

However, some details have been omitted, because of the limited size of this paper.
For example, we have not discussed multi-scattering effects for the inhomogeneities,
located the waveguide boundaries, or the accurate calculation of the field near
_ caustics, etc. These effects can be included on the basis of more precise theory.

- Nevertheless, the obtained estimations allows the effective optimization of imaging
systems by using transferal maps, computed on the basis of the calculation of the
field, scattered by probing (including isotropic scattering) model objects. '

4.4.4 Tomographic System Parameter Optimization

Several optimization problems for acoustic imaging system are considered in
this section. The discussed methodology is based on spatial maps of the medium
transferal characteristics, such as a Coefficient of Energetic Coupling and Anisotropic
Coefficient. It should be noted that the present review does not deal with the
problems of the signal temporal characteristics optimization, which is based on the
temporal medium transferal properties, such as a signal Mean Travel Time to"a
receiver, the probability of the separation of the direct and scattered signal, and so on
[73, 133]. :

Total Intensity of the Reflected Wave. First of all, let us analyze the formula
for the total intensity of the wave, reflected from the localized inhomogeneity, which
can be readily derived from the consideration, presented in the previous section:

o p@

=WE E}lSUFiJ() (4.50)

447 (V@2 )
4Py P5)

where the double sum corresponds to the incoherent summation over all rays,
reaching the receiver after the reflection from the surface of the inhomogeneity. S,
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is the coefficient of reflection, calculated at a given point on the _surface of the
inhomogeneity, pu *and p(z)are the distances between source and surface

inhomogeneity point and between surface mhomogenelty pomt and receiver,
respectively (see Fig. 4.6).

If the inhomogeneity size is small, then we can assume that p{’~p, and pff)=p2
Besides that, the set of all rays, coupling the source, S, with the inhomogeneity
surface, can be divided into a few classes of ray bundles, not intersecting with each
other. The individual class includes rays, differing insignificantly due to splitting the
ray, connecting the point S with some central point P* at the inhomogeneity surface
corresponding to the incident point of the central ray of the particular bundle. The
analogous separation can be carried out for the receiver rays. Then, we have for the
focusing factors: F"=F" and FP-F?, where F and F® are the focusmg .

t
parameters of the "central" rays. The prime coordinate system @'yzh will -
correspond to the local-body Cartesian-coordinate system. Any direction in this
system can be characterized by a normal vector n’=(n},n),n3). Then, the reflection

(1)

coefficient, S(n')=S(n/,n;,n;), can characterize the scattering surface at the particular

point. If there are several points of the surface, corresponding to the same normal
direction r’, then this function results from summing the reflection coefficients over

all these points.
Using Eq. (4.35) and the function S(n "), let us derive the intensity of the field,
reflected by the ideal reflector, |TI',{=1. The reflection coefficient can be expressed

in the medium coordinate system as:

Sy=S (v"if)’ =

1 2,
)

RS —)
20+ 0, )

where T is a unitary matrix of the transformation of the medium coordinate system (x,y,z)
to the body coordinate system (x';y’;z"), and £\ and ¢ are the incident and reflected

ray unit vectors at the point of reflection. Fmally, the expression for the total
intensity of the reflected wave is:

}jps(z‘/ o 4.51)

41rp,pl

where a=(ij), F,=F"F?. The intensity determined by Eq. (4.51) is a function of the
parameters of the problem:

1=1(040,0,5(,0),

where O, , are the radius vectors of the source, the receiver, and the inhomogeneity
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in the medium global coordinate system, respectively, S¢) is the function describing
the reflection properties of the inhomogeneity, and the matrix U determines the
spatial orientation of the reflector. Thus, the problem of the optimization of the
mentioned parameters can be formulated to provide the maximum value of the
received intensity. The greatest attention should be paid to the essential factors
influencing on the solution.

4.4.5 Some Problems of Parameter Optimization

The Optimal Scatterer Form. Let us assume that all parameters, except the
function S(-), are given and fixed:

1= I{S())~extremum .
86

Obviously, the determination of the optimal function, S(n’), can be easily replaced
by seeking the optimal function fn)=S(Tn). Thus, the initial problem is equivalent
to the following one:

E F_f(n )~ extremum,
a JC)eF

where {Fn } is a given set of parameters, F is the functional class within which we

are looking for the solution. This class should contain a large number of elements to
provide the existence of the solution. On the other hand, it should follow some
restrictions to provide the physical realization of the solution. It should be also in
accordance with limits given by the problem statement.

As an example, let us consider the problem of satisfying the asymptotic
formula, Eq. (4.49). This can be summarized as follows: A smooth, convex, closed
surface r=r(u,v), (u,v) are curvilinear coordinates at the scattering surface, is required
that maximizes the sum ) F, |k |-, where K, is the total (Gaussian) curvature of the

surface calculated at the point with the external normal . It should be assumed that

the surface area is given, the curvature at any arbitrary surface point is limited by the
following inequalities: 0<5,<K,<8,, where § , are the given values. This is a

variational problem of the nonclassical type (the optimal control problem). Its
specific feature is that there is no a priori information about the points of the surface
where reflection takes place. A general mathematical formulation of the simpler two-
dimensional problem can be expressed by the following set of equations:

P1=Py PP, +2p; pa-(pr+paypy 'y, 0<@<2m,

x _ _ ’
f\/pf+p§d<p=l, 0<8,<U<8,
A
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p1C0S@-p,sing-(p: +p3)cospn, | 0=9,~0:

p,c0s@-p,sing-~(p +pD)singn?| 0=0,°0r
P1(0)=p,(2m), py(0)=p,(2m),

Y Fui(e)-extremum, 0sq <2n, a=1,..0,,

where p=p,(¢) is the equation, giving the scatterer boundaries at the polar coordinates
system, (n{"n®) is the set of normals, and / is the boundary length.

Optimal Scatterer Orientation. The problem of the scatterer orientation
optimization consists of choosing the unitary matrix U that gives the maximum
intensity at the receiver location. The orientation can be determined by two scalar
parameters ¢,, ¢, (for example, Euler's angles). Then, the following system of

equations gives the necessity conditions of the extremum:

O S WvsF =0,
o

o0,

I S UvsFn) =0,
de, ‘a

where U, ,=3U/3¢, ,, and (*) denotes the transposition operation. It is important to
note that, if the absolute value of the vector Y £ n_ is small for the given scatterer

o
location, then the gradient of the intensity function
W= LW VSF ) - W T Y Fp) =0, 21,2
e [+

is also small. { VS is the mean value of the gradient, calculated at some intermediate
point). This fact means that the intensity, determined by Eq. (4.51), is weakly
dependent on the scatterer orientation. In the opposite case, if the value of ) Fn,

. a
is large, then the absolute value of the gradient depends essentially on the orientation.
Therefore, the relative variations of the intensity are large with changing the scatterer
orientation in space. Thus, the scalar parameter

' IEFana
a

5= ‘_ZTF , - | (4.52)

‘with its values in the interval [0,1] can be a measure of the dependence of the
received intensity on the scatterer orientation. The larger § is the stronger this
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dependence will be. The parameter3, called the "Anisotropic Coefficient" (AC) [72],
is determined by medium properties and is not dependent on scatterer properties. It
characterizes the non-uniformity of the reflector illumination from different
directions. :

Let us consider a concrete example of choosing the parameter defined above.
Let the spherical surface be illuminated from the directions determined by the vectors
n,.n,,..n,. The intensity of the flow along the direction #, is proportional to F,. The

illumination of the sphere point, defined by an external normal, &, is given by:

@ =3 Fxl N,

where [y(¥)}<|x] is a given function. Thus, ®<Y £, so we can define the relative
illumination of the sphere point as:

Y F o N
a |
T

SO(N) =

W) _
5F, |
o=t

The non-uniformity of the illumination can be defined analogously:

§=max 8®(N) - min SO(N). (4.53)
N N

AC, defined by Eq. (4.52), follows from this expression for the functional form:
y(x)=-x. However, the more physical assumption is that y(x)=-x 1(x), where 1(x) is a
unit step-function. Equation (4.52) gives an AC value of 0, if the sphere is uniformly
illuminated from all directions and the flow intensity is also uniform. However, Eq.
(4.53) shows that § decreases monotonically as L~=. This expression is in agreement
with an intuitive notion abcut the non-uniformity of illumination. Nevertheless, the
parameter, determined by Eq. (4.52), generally describes the situation correctly, and
it is the simpler one for calculation. Preliminary computation of the spatial maps of
transferal characteristics (such as AC) can be carried out before solving practical
optimization problems. First of all, the spatial maps of AC in inhomogeneous media
provide a convenient visible representation of the properties of the particular
waveguide. Secondly, the maps can be used as a priori information for future
imaging system optimization.

Figure 4.8 shows the spatial distribution of AC in the vertical (Figs. 4.8a,c) and
horizontal (Figs. 4.8b,d) planes for the bi-linear waveguide. The sound speed profile
versus depth is (¢, 1500), (-200, 1470), and (-3000, 1550), where (depth [m]. ¢
[m/sec)). The source is at a depth of -200 m for Figs. 4.8a,b, and the receiver is at the
source depth in Fig. 4.8b. The distance between thie zource and receiver is 100 km.
The greater the value AC, the darker point it is shown in the map. (A more detailed
study of the transferal characteristics for different inhomogencous waveguides can be
found in {72, 73]).
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Figure 4.8. Spatial Distribution of the Anisotropy Coefficient at the vertical (a,c) and
horizontal (b,d) planes for the bi-linear waveguide. (Adapted from [72].)

Optimal Scatterer Location. The problem consists of choosing the position of
the 'scatterer (inhomogeneity) in the given region, Q, using a priori information about
the inhomogeneity and transmitting-receiving system parameters:

1=1K0,)~ extremum.
PeQ
If the reflection coefficient is limited, that is, if SsS,, then the intensity is also limited:

1< 25, LY F,
4n P;P; a
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The parameter

nP-—-YF, (4.54)
PPy @

is determined by the medium properties. It characterizes the capacity of a particular
medium point to transfer energy, reflected from the local inhomogeneity placed at this
point, to a receiver. The smaller ¥ is, the smaller this ability is. This coefficient is
called the Coefficient of Energetic Coupling (CEC) of the points S and R through the
particular inhomogeneity point 2. CEC is proportional to the intensity of the wave

reflected by the probing sphere:
§=8, 1=—2 Y F,STn) = s, p.
4mplpla 4r

Therefore, CEC gives information about the optimal position of symmetrical scatterer.
However, if the scatterer is not symmetrical, a large value of ¥ does not guarantee a
high intensity at the receiving point. The supplementary confirmation of high received
intensity is given by the uniformity of the reflector illumination from different
directions. It is characterized by the parameter 5 defined above. Thus, we can
introduce a scalar parameter, y=¥(1-8), which gives more reliable information about
the optimal location of non-symmetrical scatterer.

The coefficients 8, ¥, and y do not take the scatterer properties into account,
so they provide a crude description of medium properties. However, they can be used
as the first step in the solution of optimization problems.

Figure 4.9 shows the maps of the spatial distribution of CEC for the same
medium and transmitting-receiving system parameters as in Fig. 4.8. -

4.4.6. Optimization of Acoustic Imaging Systems

Let us consider a model of the imaging system consisting of the arrays of
sources, S, i=1,...,n, and receivers, R, j=1,..,m, of acoustic waves observing a given
region of an inhomogeneous medium.

The quality of viewing, carried out by the pair P,=(S,R) can be characterized

i

by the scalar parameter a,20. The physical meaning of the parameter can vary

depending on the goals of the particular viewing system. Ifthe goal is a detection of
inhomogeneities appearing in the given region, the measure of the quality of observing
is the averaged energetic coupling of the points S, and R, through the points of viewed

arca:

o = [veyap,
Q

where V(P) is the CEC calculated at the point P of the region and Q defines the
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viewed area.

If one is interested in the detection of the inhomogeneities changing their
orientation in space, then the quality of viewing can be characterized by:

o = [aPyap,
Q

where 8(P) is the AC.

As we mentioned above, the quality of viewing can be also defined on the basis
of temporal parameters, such as the probability of the separation of the direct and
reflected signals, etc., if pulse probing of the medium is used.

Besides 0,20 giving estimation of the quality of viewing, other parameters

v, km

o

Figure 4.9. Spatial Distribution of the Coefficient of Energetic Coupling at the vertical (a,c)
and horizontal (b,d) planes for the bi-linear waveguide. (Adapted from [72].)
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characterizing the particular sets of sources and receivers should be introduced.
Namely, let B,20 characterize the quality deterioration resulting from placing the

source S, at a fixed position and let >0 characterize the quality deterioration resulting
from placing the receiver, R, at a fixed position. Let BZ_ Li-i'| +]j-i’|>0) be the quality
deterioration because of the influence of the other connection pairs P,
Then, the resulting quality of imaging system is determined by:
nm y
Q=ZGU—EB,-]ZYj-ZZSﬁ}’,/, (-1 +1'~1>0).

if=1 i oty

Now the optimization problem can be formulated as forming the system, having the
maximal quality. '

There are a few simplification of this generally stated problem. For example,
the number of pairs can be limited and fixed, or the regions of possible locations of
sources and receivers can be known. Therefore, one can talk about a choice of a
subsystem having the maximal quality. This is a problem of discrete mathematical
programming. It always has a solution (possibly not unique, however), which can be
found by sorting all possible variants. We will refer to this algorithm as an ordinary
sorting. The number of variants grows proportionally to 2°*" with increasing » and
m. This fact makes ordinary sorting non-effective for the solution of applied
problems. In the next subsections we will consider two methods of the accelerated
sorting, which require fewer calculations. The two algorithms are based on two
alternative strategies. They are the Excluding Algorithm (EA) and the Algorithm of
Group Sorting (AGS). Sometimes the combination of two algorithm can become very
effective. The Excluding Algorithm can start a procedure and confine the set of
permissible subsystems. If the solution is not reached by EA, AGS can take over and
provide faster convergence to the solution. It is assumed below that sources and
. receivers do not interact with each other and 8:',’J,:0. The two methods of optimizing

imaging systems and achieved results are discussed below.

The Excluding Algorithm. Let us determine the problem of finding the
maximum value of the function Q defined in the domain P:

ouS)=Y Y% a; Y B-Y. v, Pllel,.nJel,.mh. (4.55)
i 7

i€l jeJ

In other words, one should analyze the following matrix:

o, @ -, | B

4y Oy - Oy, | By
: |

anl (1"2 unm I _Bn

¥ Yy Yo |

108




and select the subgroup of rows (from first #2) and the subgroup of columns (from first
m), so that the sum of the all submatrix elements would be maximal. Let /* and J*
be optimal subdomains. The method discussed is based on the simple observation.
The sum of the elements of the ith row should be positive for any ie/*, if I* includes
more than one row. Otherwise, it means non-optimal choice of the subdomain, and
one can exclude the negative sum row and increase the quality function value.
Obviously, the analogous observation is true for the subset of columns. Thus, the first
stage of the algorithm can be summarized as follows: One should start from the input
matrix of maximal size. All rows having a negative sum of elements should be
excluded because they can not contribute to the solution. This step is called "step
(1,0)" or just (1,0). Then, for step (01), all columns having a negative sum of elements
are excluded. If the last operation produces negative sum rows, the algorithm should
returns to the steps (1,0)-(0,1). This stage is repeated as long as negative sum rows
and columns appear. The next step is labeled (1,1). At this stage, one row and one
column, having a negative common sum are excluded simultaneously. The solution
can not contain such combinations. After this stage, the negative sum rows and
columns can appear again and the algorithm must return to the steps (1,0)-(0,1). The
next step excludes one row and two columns with negative sum of the elements, and
so on. As a result, the algorithm splits into the finite steps scheme:

start*(l 0)01)(L1-(1.2)(2,1)-2.2)-. $nm)~'end

e r e e g e — o — e — ————

The solution is found when there are no excluded rows and columns at any step up to
(n,,;m), where n +1 and m +1 determine the dimension of the matrix that forms the

solution. The number of calculation steps strongly depends on the difference of the
initial matrix and the solution submatrix. The most unfavorable case is that both
matrices coiucide. Then, the number of steps of EA equals to that of the ordinary
sorting. However, the number of operations for the ordinary sorting becomes two
times less after each excluded row or column by EA. This fact results in the essential
increase of computational speed.

Algorithm of Group Sorting. The AGS is alternative to the ES algorithm. Here
the computational speed is increased by introducing a procedure similar to the gradient
descent to the solution. The algorithm can be briefly summarized as follows: First,
let us consider the easier problem. Let us fix the subset of the rows /={i,i,,...i,} of the

initial matrix and consider submatrices formed by these rows and all possible subsets
of the columns J={/,,j,,...j,}. (Here the row -B, i/, and the column -v,, jeJ, are taken
into consideration.) Then, we can find the submatrix, having the maximal quality. Let
us include the columns forming this submatrix in the subdomain .J*.

Obviously, the quality functlon determined by Eq. (4.55) can be rewritten as

follows:

oun=Y¥e, - L -y, - z(_ ’ y\ - YB~-28<1) X0/

iel ‘et jet Jad \ el
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where §(/) = Za,j—yj), O4) = Y. B, =const=0. The solution is based on the
iel iel

theorem. formulated below.

THEOREM. Let i, i) ke Lon, Icl, I, = 1,...n, be the fixed subset of
rows, determining the class of submatrices. Then, the set of submatrix
columns, J*, having the maximal quality, contains:

(1) Either all columns having the positive value of 8,(/) and only them, if

such columns exist. - That " is, if Je€dy Sy = Lom 8,.(/) > 0, then

VAR VAN AR B 8].; () > 0, and §,(7) < 0 for any column not belonging to

the subdomain J*:vjeJ, /J; ; or , o

(2) the single column, having the maximal value of 8,(1), if the

requirements of the first statement are not fulfilled. That is, if

VjeJy 8,(1)<0. ' : ’
Then J* = (j*: §,.(1)28,(1), Y.

Thus, the solution of the original problem can be found by analyzing all possible row
subsets and finding a subsystem, having the maximal quality, for each row subset. In
the final stage, the only one subsystem having the global maximum should be chosen.
Estimates of computational speed have shown that only nm2" computer operations
are needed in this case. If one float-point-operation duration is about 20 us (for
INTEL-287) and #=m=10, then the computational time of AGS is about 2-4 seconds.
On the other hand, ordinary sorting requires 3-4 minutes.

The combination of two algorithms can be desirable for some situations. The
EA algorithm decreases the matrix size very effectively, if it operates on matrices,
having the negative suims of row or column elements. However, AGS is more
effective, if there are no such combinations in the matrix. “Thus, one can start from
EA. Let us assume that the negative sums become absent at the ith step. To decide
what algorithm to use after this step, one may calculate the transition function
St Tgs)> Where 1, is the estimated time for a few next step of EA, T, is the

next
estimated time of processing the matrix by AGS. The transition to AGS takes place,
if the function f is positive or zero, i.e., />0. A form of the transition function may
be, probably, defined as follows: ‘

f (i’TnexP TGS) = ((nerl - TGS)+G (,’I 0) ((T GS —tpexl)+é)’ e>0 ’
where

Lizi,

o(iiy) =1 0,i<iy’

where i is the final step number used for the comparison of two algorithms.
As a numerical example, let us determine the optimal disposition of five sources
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and five receivers in the bi-linear waveguide with the parameters, defined above, for
the given observed area (roor1:22)=(35, 38, -2.46, -2.67) km shown by shadowed
rectangle in Fig. 4.10. Figure 4.10 shows the original positions of sources and
receivers and the optimal set of three sources and one receiver (filled circles and
triangles, respectively). The transferal coefficients are maximal in the given region for
the optimal systenr configuration.

o 4z km 25 50 75 x, km
il !

-1.5 | Si :’

S VRTTITTT Lt T/ A

Figure 4.10. An optimization of hydroacoustical imaging system from 5 sourcesand 5
receivers for the given observation area Q in the bi-linear ocean waveguide.(Adapted from

[791)

4.4.7. Conclusions

The principles of the optimal choice of imaging-system parameters in a layered
waveguide have been discussed. In particular, the transferal characteristics of the
medium, such as CEC and AC, have been defined and analyzed. These characteristics
were first defined in the papers [72, 73, 133] for designing the acoustic imaging
systems in inhomogeneous media, including refractive type oceanic waveguides. In
this paper the spatial maps of the coefficients have been used for optimizing the
number and positions of the elements of imaging systems. That would provide the
maximal sensitivity of the system. ' e '

It is important to mention some limitations implied in the discussed methods.

(1) The ray approach has been used for the calculation of the transferal
characteristics. It limits the applications of the methods to the high-frequency
range. However, both the mode and parabolic approximations can be also used
for the characteristics calculations. Some preliminary results have shown that
the spatia! structures of CEC and AC are simpler for the low-frequency range
[72].

(2) Besides the spatial transferal characteristics considered above, other
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characteristics, related to the temporal signal structure, should sometimes be
analyzed to optimize imaging systems in inhomogeneous media. Temporal
characteristics have been analyzed in [73, 133]. First of all, the temporal
characteristics are preferable for the monitoring of nonstationary objects or
media. Secondly, the problem of the suppression of direct illumination signal
fluctuations can be solved by using the temporal-transferal characteristics, for
example, by using the Dark Field Method developed for inhomogeneous media
[73, 75]. In this case we deal with more general optimization of acoustic
imaging systems, taking the nonstationarity into account [18, 66]. It is
important to note that geometrical dispersion has influence on temporal-
transferal characteristics (unlike CEC and AC) for low frequencies that results
in destroying the temporal pulse striicture [134]. As a consequence, there are
optimal frequency intervals for the observation of nonstationary
inhomogeneities.

(3) The problem of acoustic imaging (similar to the problem of tomographic
monitoring) is related to the inverse scattering problem. It is well-known that
the regularization procedure based on a priori information is usually required
to reject non-stable solutions. From this point of view, the optimization of the
positions of the elements of imaging system, using a priori information about
inhomogeneous media, provides an exclusion of non-stable solutions. The
regularization issue requires more detailed future study.

(4) For the present consideration incoherent summation of rays has been used.
It permits us to neglect fine-interference-field structure which is important in
smoothly inhomogeneous media. The limitaticns on a use of this
approximation depend on the properties of real inhomogeneous media, such as
atmospheric and oceanic waveguides. If spatially distributed random
inhomogeneities are present in such waveguides, then it should be assumed that
the acoustic field has a partially coherent component. The importance of the
coherent component is determined by both the space-time spectra of random
medium variations and the scale of medium smooth variations [135]. The
coherent or partially coherent summation of rays do not change the general
methodology of optimization procedure.

(5) It is important to mention a problem, closely related to the discussed
optimization examples. In optimizing the positions of sources and receivers,
we have assumed a fixed observation area of medium. Thus, the optimal
apertures for viewing a given, relatively small region of the medium have been
estimated. If we assume a set of sources and receivers to be given, then in some
sense, we can obtain a generalized aperture basis from the solution of the
problem for every relatively small element of medium. Different working
combinations of sources and receivers, allows us to carry out the spatial
scanning of large regions of the inhomogeneous area. Each solution can be
considered as a tomographic projection similar to one in the differential
diagnostics [35].




Finally, we can suppose that the presented algorithms can be readily generalized
for electromagnetic probing of atmosphere. Moreover, analogous approaches can be
used in seismic exploration, in non-destructive control, and medicine.

45 FRESNEL DIFFRACTION TOMOGRAPHY IN THE OCEAN

The concept of visualizing primary and secondary sources of acoustic fields and
objects in those fields has numerously and independently appeared in many applied
areas, such as medicine and non-destructive testing and control and, more to the point
here, in underwater engineering, environmental monitoring of extensive oceanic
regions, navigation, and many others. To cite a single source, among many, we note
the early paper on “acoustic vision” [7]. In acoustic vision the spatial distribution of
some acoustic-field parameters is presented as patterns of varying intensities or colors,
which can be referred to as an acoustic image.

Usually, the reconstruction of acoustic images is based on using some numencal
technique. Such images provide informative interpretations of large quantities of
measured data. However, one can not expect a direct analogy between acoustic and
optic images because they deal with scatterer-wave interactions of different physical
types. This fact makes acoustic images unusual in the sense of photographic
perception. For example, internal structure of acoustically transparent objects can be
visible, and, in that sense, be liken to an X-ray of the internal structure of the human
body. Also, partially coherent interference structures of secondary source fields may
lead to significant “hlghllghts” in acoustic images, which can be referred to as
speckle-noise. Finally, in optical vision we are usually thinking in terms of ray-theory
propagation, whereas in acoustic vision we may be considering mode-theory
propagation.

In this section we propose to generahze standard optical-vision methodology
to acoustic vision in geophysical waveguides. -Thus, it is assumed that the distances
to the observation region from the radiating and receiving systems are great enough,
so that the conditions of waveguide propagation are satisfied. -First, it should be
mentioned that the ocean medium is generally inhomogeneous. If rough and complex
boundaries are not present, propagation in the water column can be described by using
a smoothly inhomogeneous, layered waveguide model: Large-scale inhomogeneities -
complicate the process of local-inhomogeneity tomographic reconstruction from
measured data, because such media are not 1so-planar and do not "transmlt" images
[24]. ’

. Secondly, the ocean medium can be unsteady and randomly mhomogeneous
This produces illumination fluctuations that limit the use of the traditional vision
methods developed for homogennous media. Thirdly, observed objects usually have'
large dimensions in comparison with a wavelength but weak gradients (for example,:
hydrolenses), so that the scaftered-field energy is mostly concentrated in a small -
angular interval in the forward illumination direction. This is 1mportant because the
quality of images depends on the useful signal to background noise ratio, and the
“signal” is the weak forward-scattered part and the backgrour:d is the strong forwatd
propagating wave.
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Summarizing the above-mentioned facts, we will assume that an imaging
scheme, in which the investigated inhomogeneities are placed between the illumination
source and receiving system, is designed for optimal hydroacoustic vision. This
scheme is analogous to the optical one, but in the acoustic scheme, the spatially
distributed radiating and receiving systems, in combination with numerical
reconstruction algorithm, play the roles of the image-forming lenses.

The above described phenomena significantly complicate the process of
acoustic-image reconstruction in comparison with free-space imaging. Thus, it is
necessary to take into account waveguide propagation conditions in the reconstruction
algorithm. Moreover, it is important that some means of reducing the forward-
propagating field in comparison with the forward-scattered field be implemented. One
such scheme providing filtration of the strong direct-illumination field that has been
introduced is called the Dark Field Method [75].

In previous papers [75, 76], it has been shown, that under the above conditions
of oceanic inhomogeneity, images can be reconstructed in a way similar to "shadow"
images, which contain information about only one projection of the inhomogeneity.
In the following subsections, we investigate possibilities of the simultaneous
processing of a few inhomogeneity projections to obtain more complete information
about the inhomogeneity’s spatial distribution. We discuss some analytical and
numerical results to complement data in the ultrasonic frequency range from physical
laboratory model experiments.

4.5.1 The Analysis of the One-View Fresnel Image Reconstruction
in the Ocean

The inhomogeneity-reconstruction algorithms, considered in many papers on
tomography, are based on processing combinations of projections. The term
"projection” is defined there as the field distribution along a receiving array for one
fixed position of the radiating and receiving system. It is usually assumed that the
illumination and scattered waves are planar, and that the scattering process consists of
changing amplitude and phase (or propagation time) of the plane wave. This
assumption can be satisfied if the inhomogeneity is large and weak [12, 50]. A
different situation is considered in diffraction tomography, when we have a set of
angles measuring diffracted signals for many fixed-illuminating source position [130].
Thus, we can define the received-field distribution, characterizing the scattered field
for one fixed illumination angle, as one projection. The concept of projections is
especially convenient for inhomogeneities of large-wave dimensions, when the
scattered-signal spectrum is confined in a small interval of scattering angles, and the
small array aperture is enough for measurermnents. In this case, we can assume that the
array dimensions correspond to several Fresnel zones for the observed inhomogeneity.
From a physical point of view, we deal with one projection, desplte the fact that the
aperture dimensions allow for reconstructing a two- diménsional mhomogenelty
distribution by focusmg the measured signal, but the longltudmal resolution is small.
The obtained pseudo-image is the so-called "shadow" image. It is similar to a single
projection in the tomographic method, but at the same time this image contains
information on the longitudinal structure of inhomogeneity. Further we shall refer to
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it as a one-view image. In previous papers (see, for example, {75]), the properties of
such images were investigated and certain methods of spatial filtration of direct-
illuminating signals were developed.

For more complete reconstruction of two-dimensional horizontal distributions
of inhomogeneities, the simultaneous processing of projections or pseudo-images,
measured at different illumination angles can be used. This allows for obtaining a
more complete reconstruction of the shape of the inhomogeneity, even if only a few
projections are available. It should be mentioned that this scheme is similar to the
principle of human eyesight, i.e., to the binocular system, consisting of two lenses at
a small angle from each other. The investigation of multi-view image characteristics
will be considered in the next subsection. Here we analyze one-view images. In
particular, we study the influence of waveguide propagation conditions on the
forination of acoustic images in the ocean.

We can use the analogy between image formation by lerises and antennae in the
Fresnel zone. In addition to that, we assume that the observed rigid inclusion of the
horizontal and vertical dimensions, L and d, respectively, is situated in the waveguide
between the source and the receiving system represented by horizontal and vertical
arrays of hydrophones. The displacement velocity potential, «(R), in the region of
observation, R(x,y.z); is determined from the Helmholtz-Kirchhoff equation [8, 34]:

Ju(R )
on

G(Rs,R)+u(Rs)§—G—(g—‘£2]dS= u(R), (4.56)
n

1
uo(R)+4—nf

where #(R) is the displacement velocity potential of the direct-illumination field, »
is the outer normal on the inhomogeneity surface §, and G(R_,R) is the Green’s
function of the unperturbed medium. The problem consists of the reconstruction of
the inhomogeneity’s location and shape by the reconstruction of the spatial distribution
of secondary sources, du(R,)/én and u(R,), from the field, »(R), measured on the array
aperture, M(y,Z) (see Fig. 4.11). The measurements are carried out in the presence of
noise.

As follows from Eq. (4.56), the problem of acoustic vision is the inverse
scattering problem (ISP), because the integral equation with the known right-hand side
_should be solved with respect to the spatial distribution of secondary sources on the
surface S of unknown shape. From this point of view, the problem of vision is a
particular problem of ISP. ISP, itself, is the more general and complex problem of the
reconstruction of both the internal structure and physical characteristics of
inhomogeneities. On the other hand, the aim of vision is to create images of
investigated objects convenient for visual observation.
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Figure 4.11. A scheme of one-view acoustical-
vision system and measurement geometry.
(Adapted from [34].)

‘For further analysis of imaging in oceanic waveguides, some approximations,
which lead to problem simplification, are necessary. Let us assume that
inhomogeneity is located far enough from waveguide surfaces, so that multiple
scattering can be neglected. In addition to that, we assume that: 1) the horizontal
dimension of the inhomogeneity is large compared to a wavelength (i.e., L»., where A
is the wavelength of the illuminating source); 2) narrow-angle scattering takes place;
and 3) the distances between source, inhomogeneity, and receiver are large with
respect to the waveguide thickness. In this case, Eq. (4.56) can be rewritten in the
simplified form [34]:

°(§n)G(én O:R)E dy = u(R), 4.57)

1,(R) - —ff oG

where o(&n) is a part of plane limited by the line dividing the light and dark sides of
* the inhomogeneity situated at the point ( x.y,2;), wherex, is the distance from the

source and a-x, - from the receiver (see Fig. 4:11). Further, we use the modal

, tepresentatlon of the acoustic field in an oceanic waveguide [8]. Thus, ‘we get the
expression for the incident field and the Green’s function: ,

expﬂ ax —%:—) I . ‘
uo(xy ) = ZAotp,.(a)tp,.(-,) Hexp i%K,.J, o . - (4.58)

ylax,)

G& n,Ofny,«) = E(p,.,(y)<p,..(n)—-—— x

JI? (a-xg) ’

116




2
x exp[ia-xy)K,, 12—2—? i;:}';': -i%], | {4.59)

where N is a number of propagating waveguide modes and «, and ¢, are the

horizontal modal wavenumbers and the. vertical modal eigenfunctions, respectively.
The distances included in the exponential terms are represented by a Taylor expansion,
including the second-order components; so that we take into account the sphericity of
the incident and scattered fields, and 4,is a constant determined by the power of the

source.

Combining Egs. (4.58), (4.59), and (4.57), we obtain the integral equation with
respect to the unknown location and shape of inhomogeneity. For an arbitrary
inhomogeneity shape, determined by o, the verticai and horizontal coordinates, (),
in Eq. (4.57) are interrelated, complicating the analysis. Because these dependencies

_contain different physical information, it is convenient to investigate them separately.
1n the vertical direction only, trapped waveguide modes take part in the scattering at
large distances, and that causes a transformation of the modal spectrum [28]. In the
horizontal direction, the diffraction of each mode on the inhomogeneity is analogous
to diffraction in free space. For simplification of the analysis, we assume that a
separation of coordinates is possible for the given mhomogenelty shape,
o(&)=L(n) T(€). Then, taking Eqs. (4.58) and (4.59) into account, we can arrive at the
following form of integral equation (4.57):

N =Y (=) .
u(asy’:a) ® AOZ M(B_"_\-i)_ CXP{I(I‘O n 4]} OE ( )E (Pm( )( 1 nm x

R - o (4.60)
x expli(k x; K, (a-xg)+ sz( 5 2)] i L(n)exp[-—l(lx +_:’_K ]n &
where
= a;_: . a—x2+.§é’.~2.x5, si=x£+—%;-2z- ,
and
T,,,,,=}T(§)(P,.(éﬂ;)(?,}(fﬁsz)d&- | (4.61)

The first term on the right-hand side of Eq. (4.60) represents the incident field in the
observed region in the modal representation. The second term corresponds to the
scattered field. Let us consider Eq. (4.60) from the point of view of the image
reconstruction from the field distribution measured on the aperture, M(y,z). First, we
examine the pessibilities of the inhomogeneity’s vertica! distribution. As follows from
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Eq.(4.60), the scattering in the vertical direction consists in the modal specirum
transformation, which is defined by the matrix component in Eg. (4.61). If the vertical
inhomogeneity dimension, d, is small, then the characteristic scale of the waveguide-
field fluctuations is much larger than 4. Then, the modal vertical functions for the
isovelocity waveguide can be written as:

@) = sinig,2) = o eFe ),
2i
Defining the function
B N R o
- E _[ T(®)e g,

we obtain the expression for the matrix T, :

T, =sXT, -T

nm 2 ntm n;m]‘

(4.62)

The spatial filtration of waveguide modes in the scattering process can be described
(as in free space) by the convolution of the "input" discrete-mode spectrum and the
modal filter 7, determined by Eq. (4.61):

“nm?

N N
0,2 = -% gm,f Ty~ Tyor) L » (4.63)

n=0

where
. p . y i y
L, =ik, f L(wexp|-i| ~tx,+Zx [ nidn .
4 s/ r/

If the waveguide surfaces are removed to infinity, Eq. (4.63) transforms into the
convolution integral, corresponding to the spatial filtration in the free space. As seen
from Eq. (4.63), estimating the vertical structure of the inhomogeneity is possible, if
we solve Eq. (4.63) by the deconvolution method. However, a priori information
about the incident-field modal spectrum and the measured modal spectrum of the
scattered field is required. As an example, let us consider the situation when the
inhomogeneity is illuminated by a single mode and the scattered field consists of many
modes, which can be resolved by a measuring system. In this case, the envelope
function of the modal spectrum represents the scattering directional pattern, which
permits estimating the vertical dimension of the inhomogeneity by the inverse Fourier -
transform. However, it should be mentioned that such a way of reconstruction
generally requires a waveguide-mode selection. This could be done by the use of
vertical arrays, time strobing or other methods. These methods are associated with
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both technical difficulties and complex processing algorithms [50, 66].

Here, we only details the reconstruction of images based on information on
horizontal distributions of inhomogeneities. As follows from Eq. (4.60), for the given
indices, (n,m), the field distribution along the receiving aperture is the Fresnel
transform of an unknown function, which determines the inhomogeneity shape in the
horizontal plane, in the transfer direction. The multi-mode structure reveals itself in
additional interference modulation within the observed region, because of the mode
summation. In Refs. [28, 29], the conditions for which the interference-modulation
spatial spectrum and the spatial spectrum corresponding to the inhomogeneity
influence differ substantially are obtained; that is,

4nr, % 7, ‘
= - A KK, 464
[AKU) (KU)L AR (4.64)

where r;=a-x; and (x,) denotes the average value of the modal waverumber. For fixed
parameters of the waveguide and the inhomogeneities, the distance of observation, Ty
plays an important role. Thus, for r»7,, where 7, is the distance at which the

condition imposed by Eq. (4.64) is satisfied, the frequency of the interference
modulation is higher than the frequency of the modulation caused by the
inhomogeneity; and, for r «7), it is less than the "useful" variations. This provides

eagy filtration of two effects. However, when Eq. (4.64) is satisfied, the interference
modulation may be filtered only by using a priori information about waveguide and
inhomogencity parameters. Thus, the image of the inhomogeneity, reconstructed
without taking the modal structure into account, may be significantly altered. At the
distances satisfying condition (4.64), the images corresponding to different modes
superpose making the resulting image interpretation rather difficult. At large
distances, inhomogeneity images are multiplied.

Let us consider an example of the case when only one mode is present and n=m.
To this end, we may assume that mode selection is carried out, or one mode is
differentiated as a result of dissipation loss in waveguide propagation, or the mode
interference component is filtered within the imaging process [76]. In the one-mode
approximation, Eq. (4.60) is equivalent to:

2 g Yo,y

’ 2 . -
ik, ipde "(—, 1) i
ueryz) = Sye 2" -S,e M0 [1me N an, (4.65)

n

where

Sy = AR, E)rok) expliCar, -,

)

p ‘ e
S, = _zﬁnpn(:a)cp"(:‘.)( -i,K”)TM(Kir s’y 12 exp H K x4k (a —xz)—gJ }
i » .
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Assuming that y =0, we obtain the expression for the second term in Eq. (4.65):

- i .2
second term=S, :’;L(n)exp [l[ —Kn—;J—fy+Kn N :: -XQ] ]dn .

This is the Fresnel integral where the exponential functions represent the complete
orthonormal basis [133]. This fact helps in obtaining the solution of integral equation
(4.65) with respect to L(n), using the property of the Fresnel-basis orthonormality. To
do this, it is necessary to multiply both sides of the equation by the factor
expli(k,y sina-x y%R)], where [« R] are the polar coordinates of the point (r), and to
integrate the expression over the whole region where the Fresnel functions are defined.
Then, on the left-hand side of Eq. (4.65), we obtain the Fresnel transform of the field
measured by an infinite aperture. The right-hand side contains two images: the point-
illuminating source image for «°=0 and R°=2a (the first term) and the image L{o,r%),
determined for R=2(a-x;). However, it is a formal solution, because, in reality, we deal
with finite apertures in experiments. Defining this aperture by the function M(,), we
multiply both sides of Eq. (4.65) by M(y Jexpli(x,v, sina-x,y2/R)] and integrate it within
infinite limits. Then, on the left-hand side, we obtain the function ® (a.R), which
determines the algorithm for image reconstruction using the measured data. Two
terms on the right-hand side of Eq. (4.65) can be writien as:

-l A
right-hand side =S, F | af - | -8, [LOF,| a-Le | i, (4.66)
. 2a R J r'
where €= 1 lisa parameter of vision-system focusing, sind=a, and F, is the

2(a-x;) R
pulse-transient characteristic of reconsiruction system, i.e., the image of a primary or
secondary point source:

F@R) = fM(yA) exp {ixn[[%-a)yA+ey:]} &y, (4.67)

-

Tt is known from the theory of image-reconstruction systems (for example, for optical
systems) that the quality of imaging is characterized by the pulse-transient function.
For some cases, this function appears to be independent of the point-source positicn
within a vision area. However, in acoustical applications this does not occur because
the image of a discrete, point-scattering object essentially depends on point location
within the vision area. As seen from Eq. (4.67), this dependence is very pronounced,
when the observation point moves out of the possible measurement area. For the
rectangular aperture, when
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- Figure 4.12. Fresnel images of two paint sources

oy < | LpalsDr2
n(yA) = loalyA|>D/2 > /

and, for e=0 (for a focused image), F(o,a-x;) =Dsinc(x,aD), and the transverse
resolution (along the y-axis) can be characterized by Ay =Ma-x5)/2D. The point-source
image is much wider in the longitudinal direction: Ax is approximately 5 to 10 times
Ay. Better estimates can be obtained directly from the Fresnel integral. As an
observed object moves away, the separate resolution elements extend along the x -axis.
As follows from Eq. (4.66), the structure of the point-source image determines the

number of independent resolution elements in the final object image.

In Fig. 4.12, the images of two point sources at different angles and distances,
a-x; =D, D=30A, relative to receiving array are shown. It can be seen that the image

of the distant source is displayed in the observation area as a quasi-uniform
background. This is caused by the finite dimensions of the antenna aperture and,
therefore, by weak focusing of the field from distant sources. It should be néted that
the number of independent image elements is determined not only by the size of the
point-source image, but also by the limited area of vision. This circumstance is
stipulated by an inapplicability of the Fresnel approximation near the antenna and the
resolution decrease at large distances and large displacements along the x-axis. As
follows from Eq. (4.56), the receiving system registers both the scattered field,
characterizing the observed inhomogeneities, and the direct-illumination field. The
first term in Eq. (4.56) defines the source image. Once again, if the source is far
enough from ‘the receiver, then its image occupies the whole vision area. As
mentioned before, the strong direct signal fluctuations mask inhomogeneity images.
In addition to that, the presence of a strong direct signal leads to a decrease of dynamic
range in signal registration. To overcome these difficulties and suppress the direct-
illumination field, the Dark Field Method has been developed by an analogy with the
optic case [75. 76]. This method is based on the essential separation of scattered and
direct-signal spatial spectra, which arises from the differences in distances from
receiving system. There are two different ways to accomplish the Dark Field Method.
In the first case, the focused signals of two adjacent receivers are subtracted and

distributed in a horizontal plane from one
projection with sources situated at different angle e~
and distances. (Adapted from {34]) A0

multiplied by a certain mask. Then, the resulting spatial components are filtered [76].
The second way is based on the spatial filtration of the Fresnel images by
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two-dimensional filters, adjusted to the illumination-source image [76]. Both inethods
require a priori information about the illumination-source location. However, the
second way may be more effective in complex, non-stationary media because the filter
can be constructed by using the empirical data in the absence of inhomogeneities.

804

Figure 4.13. Image of an illumination source and scatterer: (a) without filtering; (b) after
filtering. (Adapted from [79].)

An example of the diffracted signal filtering from the high-level illumination
background, when the illumination signal is about 15 dB higher than the diffracted
one, is given in Fig. 4.13 [79]. Figure 4.13b shows the scatterer image, obtained by
using the two-dimensional spatial spectrum filter, 6(¢,.8) = |[FOE8)1 ", where FOE.E)

is the source spectrum, and & and &, are spatial frequencies. In the presented

example, the dimensions of the aperture are about ten Fresnel zones of the illumination
source. ’

Reference [76] ‘describes the application of this method to the image
reconstruction of a vertical steel rod in a water layer.” The interference of waveguide
modes in these experiments resulted in a strong distortion of the source image in the
observation area. This led to the almost complete masking of the steel rod image. The
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Figure 4.14. Images of a Greek letter I1(a) and the transverse rectangle (b) reconstructed from
one projection with the direct illumination field suppressed. Figure illustrates pyoblems with
one-view image reconstruction. (Adapted from’ [34]) C o
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spatia! filter, designed by an inversion of the illumination source-amplitude spectrum,
taking moda! interference into account, was used to localize the rod. As seen from the
analysis of different kinds of one-view images, a significant portion of information
may be lost for complex spatial distributions that leads to some uncertainty in the
estimation of the observed objects shape and location. To illustrate this fact, images
of a Greek letter, I1, and a rectangle, extended in the transverse direction, y, of the
same dimensions along the y-axis are given in Fig. 4.14 [34].

Numerical simulations show that an adequate interpretation of various objects
from one-view images is difficult. Recently, tomographic methods providing the most
complete reconstruction of spatial distributions of inhomogeneities by the
simultaneous processing of projections at different angles have been developed.
However, the consequent measurements of signals in the ocean at many angles is a
long-termed process, which is not effective for non-stationary inhomogeneity
observations. On the other hand, the design of schemes of simultaneous measurements
at different angles is very expensive. Apparently, a possible solution is an application
of scanty-view schemes, which allow for the partial resolution of this problem.
Additionally, when waveguide influences become significant, it is important to
maintain illumination sources and receiving arrays in the most effective aspects with
respect to natural ocean-waveguide conditions. However, it is necessary to take into
account technical and other difficulties arising in the design of remote acoustic-vision
systems. The use of long horizontal antennas of continuous aperture, measuring many
Fresnel zones, appears to be less effective than the use of arrays of sparse acoustic
receivers.

Some vision schemes, based on sparse transducer arrays and used in the scheme
of reconstruction from two projections (i.e., a "binocular scheme") are discussed in the
next subsections. It is also necessary to pay attention to the influence of waveguide
conditions on vertical receiver locations. In papers [46, 130] differential diagnostics
methods have been proposed for the reconstruction of inhomogeneity spatial structures
by vertical radiating and receiving arrays. In this way, an optimal receiving-system
disposition provides for matched radiation and reception of waveguide modes
significantly separated in the modal spectrum.  The general problem of the
optimization of source and receiver locations in the acoustic-vision scheme is
considered in [133], where the translation characteristics of inhomogeneous media are
introduced and special optimization algorithms are discussed.

4.5.2 Binocular Scheme of Acoustic Vision

Returning to the consideration of scanty-view schemes, we shall assume that
one-mode propagation can take place. However, in distinction from the previous case,
we will consider the imaging of inhomogeneities by a finite number of sparscly located
receivers. Before the analysis of the binocular scheme, consisting of two remote
arrays, we consider briefly the one-view reconstruction by a discrete array. The
aperture function M(y,) for a finite number, N, of receivers can be written as:
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N
M(y,) = E_;AOS(M' Y, (4.68)

where

~ Lly,JsDi2 _
A, = const, I’IyA = 0y, |>Dn d = DIN ,

and D is the array length.
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Figure 4.15. Images of an iliumination source (dashed line) and a
scatterer in the plane of the scatterer: (a) before filtering; (b) and (c)
after filtering. (Adapted from [76]).

It is well-known that the use of finite-size arrays results in the multiplication of
images [76]. Figure 4.15a shows the resulting multiplied images of the point scatterer
and the point-illumination source in the area of scatterer localization. The received
signal was processed by focusing the source image and leaving the scatterer image
unfocused. Substituting Eq. (4.68) into Eq. (4.67), we obtain the focused-multiplied
image of the illuminating source in the focusing plane of the illumination source:

P(xy)~sm(N%) sin"( %) ,

where a is the distance between the source and receiver, and k=2wh.
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For direct-signal suppression, a filter enclosing the main and two ‘adjacent
maxima of each source image was used. Then, the obtained signal was focused into
each point of the vision area (Fig. 4.15 b). Besides that, more effective filtration can
be achieved, when the matched-filter muitiplier is 9 =sin(kyd/2q). Suppressing the
spectral harmonics, +N, we obtain a pure scattered signal (Fig. 4.15¢). The vision area
of such a sysiem is limited by the number of receiving elements. In the considered
case, the number of individual elements of the image in the transverse direction (along

IR

Figure 4.16. Image reconstruction by two 8-element arrays of length equal to 10Aseparated by
800\ before (a) and after (b) filtering. Binocular tomographic recenstruction scheme.
(Adapted from [79]).

the y-axis) is of order N=D/d. Apparently, these simplified schemes are useful for the
observations of small objecis. To determine the true location of observed object by
using the same receiving system, one may get a set of images for different illumination
frequencies. The true image in obtained patterns keeps the same location. By
summing the received images from different frequercies, we can get the true object
location. The resolution in the longitudinal direction is limited both by the dimensions
of the region of measurements, as for the continuous aperture, and by the
multiplication effect. As it was mentioned before, it is necessary to increase the
receiving aperture dimensions to increase the spatial resolution in the longitudinal
direction (along the x-axis). This is difficult to design for practical purposes.
However, one can avoid these difficulties by using a recetving system consisting of
two remote antennas. Then, the vision is carried out from two directions that can
provide some advantages, for example an increase of longitudinal resolution.
According to Eqs (4.66)-(4.68), images, reconstructed by each array, are similar to
those shown in Fig. 4.15, and the resulting image may be obtained by coherent or
incoherent summation of these images. As a result of coherent summation, the
obtained signal is modulated by the interference component, characterized by different
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spatial periods for different distances from the antennas. In particuiar, the spatial
frequency of modulation decreases as the distance from observation area to receiving
arrays increases. Moreover, the modulation frequency increases with the angular
displacement augmentation. Ir certain cases such spatia} modulation allows for the
determination of the distance from the scattering inhomogeneity, but this requires
either observations at several frequencies or the presence of moving inhomogeneities.

Let us examine closely the incoherent summiation of images [34, 79]. This type
of processing mey be used, when the signals from each receiving region are
incoherent. If the distance between the receiving arrays is large enough (more than the
interval of coherence depending on randomly distributed inhomogeneities in the
ocean), then interfererice modulation is not present in images. As it is shown in Fig,
4.164a, the unfiltered-illumination signal masks the image of the point scatterer almost
completely, and, after the filtration, the scatterer is clea:iy seen (Fig. 4.16b). Only one
of the multiplied images of small spatial resoiution is shown in Fig. 4.16. The
resolution is low because small arrays (i.e., D~ 101) were used. Each separate array
does not allow determination of the distance from the inhomogeneity and its
configuration in the given vision area. A system of two arrays can solve this problem.
The accuracy of distance determination depends rather on the mutual orientation of
arrays than on the array lengths. In this case, the spatial resolution is determined by
vertical and horizontal projections of array direction patterns into the given vision area.
Spectral filtration of the illumination source may cause a distortion of the images,
because the low frequencies in the inhomogeneity spectrum are also suppressed.
Figure 4.17 shows the binocular iniage of the rectangie, extended in the transverse
direction. Only the edges of the rectangle are visible, because these regions are formed
by the high-frequency component of the spatial spectrum, whick was not suppressed
by the filtration.

] . o Y
. . . b 6 T2 Lonand <
Figure 4.17. Filtered iinage of the transverse Q&m% 2 s
rectangle reconstructed from two projections.| {. 55 ™ & °q. s
(Adapted froin [79].) ) -0.1 ¥, m 0.1

The presented consideration has shown that the recoustruction of the spatial
distribution of inhomogeneities by using sparse-element arrays and a few angles of
observations may be carried out effectively only in certain situations. Apparently, it
is possible to observe spatially localized inhomogeneities moving in the vision area.
The reconstruction of complex-shaped objects or the spatial distribution of several
objects requires a registration of a large amecunt of data. To this-end, in the next

subsection we shall consider the possibilities of acoustic imaging by a common
- processing of a few images at various observaticn angles, i.e., multi-view images.
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4.5.3 Multi-View Images

Contrary to the binocular scheme, in which the images were formed for only
one iliuminating source, we ncw consider schemes where the illumination and
receiving angles will be changed simultaneously with the same step-size in opposite
directions, and the receiving-array, bearing-angle shift at the same pitch in opposite
directions. For observation of stationary distributions, the subsequent measurements
of partial images at ehch angular view may be carried out [34]. In the opposite case,
simultaneous measurements are required. As mentioned, the resulting image may be
obtained by both coherent and incoberent summation of separate projections.
Coherent summation is associated with interference effects, which can essentially
distort the observed object image. Furtherinore, processing in this manner allows
summation with correcting complex weight coefficients, which may improve the
image quality. In the presence of randomly distributed inhomogeneities, it is
convenient to carry out incoherent summation to reduce speckle-noise. Figure 4.18
chows a multi-view image of a rectangle as a result of coherent (a) and incoherent (b)
summation of twelve partial images, reconstructed at various angles equidistant within
the interval from 0 to 90 degrees. First, we can see that the coherent summation gives
a significant interference structure, which masks the image of the rectangle. The
interference structure is caused by the anisotropic shape of the scatterer.
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Figure 4.18. Filtered multi-view irage of the horizontal rectangle a3 a resuit of coherent (a)
and incoherent (b) summation of 12 projections. (Adapted from [791.)

Consequently, the two images, corresponding tc observations from the longer sides of
the rectangle, interfere as in the binocular scheme. Secondly, spatial interference of
the resulting image is caused by a complex structure of each separate projectior. And,
finally, the interference from numerous separate image details of approximately equal
brightness produces the speckle-noise [8]. This is well known not only in acoustics
but also in optical reconstruction by the laser light. These phenomena can be taken
into account in the development of the special methods of acoustic vision, in
particular, in ultrasonic medical diagnostics. However, in certain cases, when an
estimate of the average distribution of inhomogeneities is required or when partial
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images are incoherent due to the influence of random inhomogeneities, incoherent
summation should be carried out (as in Fig. 4.18b). 'In this case, there are no
interference structures in the resulting image, so the image looks smoother. However,
one loses the opportunity for ccherent processing of signals.
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Figure 4.19. Multi-view image of the point source reconstructed from 12 projections when the
source is situated at the center (a) and near the edge (b) of the vision area. (Adapted from

[341)

It is also important to examine the characteristics usually used for the
description of image quality, namely, the spatial resolution and the array-formed shape
of vision area [34]. As seen from Eqs. (4.65) - (4.67), Fresnel images arc rion-
isoplanar, i.e., spatial resolution depends significantly on the scatterer disposition
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Figure 4.20. Coherent (a) and incoherent (b) multi-view images of the Greek letter IT
reconstructed from 32 projections. (Adapted from [34].)

within the vision area. In multi-view imaging, the best resolution appears in the area
center (Fig. 4.19a) because all partial images of the point source are identical. An
individual element of resolution becomes spread out and decreases in its amplitude as
it is displaced from the center of formed vision area (Fig. 4.19b). This occurs because,
for several angles, the observation point is located at greater distances, so that its
image is elongated in the direction of the corresponding array. Thus, the resulting
image becomes spread out in space. Numerical simulation has shown that, for the
multi-view system of reconstruction in the Fresnel zone, the optimal vision area is a
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circle of the radius 0.75a with the center in the point (0.5¢,0). The multi-view images
of the Greek letter II are given in Fig. 4.20 for coherent (a) and incoherent (b)
summation of images at 32 observation angles, equidistantly distributed wrthm the
interval from 0 to 180 degrees

In the considered example, the image of the self-illuminating object is
calculated. This allows the possibility to investigate Fresnel image reconstfuction
without reference to the problem of the direct-illumination field suppressron It can
be seen that information about the source spatial distribution is augmented by'
incoherent summation. In coherent summation, one of the lines forming the letter is
barely visible. This effect is evidently caused by the interference because it dlsappears
with a shift of the letter with respect to the center of observation area. A comparlson :
of two images shows that, in the case of incoherent summation, the noise appears in
the form of some averaged "halo", which may be removed by low-frequency filter.
For the other case, when partial images are summed coherently, the interference
speckle-noise appears. This noise has wide a spatial spectrum that makes the filtration
difficult. ‘

4.5.4 Experimental Reconstruction of Scanty-Vlew Images by Physncal
Modeling :

For verification of acoustic-image-reconstruction'algorithms, an ultrasonic
experiment was designed [76]. Tt allowed for laboratory modeling of propagation and
scattering of acoustic signals in oceanic waveguides. The system of modeling
measurements includes a homogeneous water layer 3 cm thick-and a sourid speed of

8 7H 6

Figure 4.21. A scheme of the modeling experiment: 1 - pulse generator, 2 - power amplifier, 3
- pulse source, 4 - an observation object, 5 - a moy vmg receiver, 6 - an.amplifier, 7 - a filter, 8 -
a computer. (Adapted from [79].) ‘

1485 m/s overlaymo a rubber bottom A plezoceramlc source havmg a horizontal
directional pattern allowed for the avoidance of reflection fromi the basin walls. Quasi-
harmonic pulsed signals of the duration of 300 micto-seconds at the frequencies of 140
kHz and 512 ki{z were used. Because of strong los:es in the rubber bottom, only a
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few modes were propagated. The received signals were recorded by two quadrature
channels for later processing and image reconstruction by a computer system (see Fig.
4.21). An inhomogeneity in the form of a vertically positioned steel cylinder of
diameter 0.25 cm was placed at a distance of 20 cm from the source. The field was
measured at a distance of 44.6 cm from the source by scanning with the receiving
system. The length of the synthetic aperture was 28.6 cm. A distinctive feature of the
experimental set was the appréciable length of both the scattering inho.uogeneity and
the illumination source (with the horizontal dimensions of 7 cm).

, Figure 4.22a shows the image of the cylinder, reconstructed from one
‘projection. Evidently, the image mainly represents the illuminating source. Here the .
waveguide modal interference is clearly depicted as vertical strips fully masking the
image of the cylinder. The scatterer image after the spatial filtration is given in Fig.
422b. The fiiter was inversely proportional to the amplitude spectrum of the
illumination and took the source geometry and modal interference into account. The
filter was formed from the experimental data in the absence of the cylinder. The image
after filtration allowed determination of the cylinder position. The cylinder
dimensions were less than a wavelength, so the reconstruction of the inhomogeneity
shape was practically impossible.

1““ 60 &

X, cm
X, cm

1 . Hafiy 2 B i b? Lt
-25 y, em 25 -25 ¥, cm 25
Figure 4.22. An one-view image of the cylinder before (a) and after (b) filtering. (Adapted
from [76].)

The possibilities of the multi-view reconstruction can be also investigated by

this laboratory experiment. In the experiment, we can assume the equivalency of the

" situations when a source and a receiving array rotates around the inhomogeneity
situated in center and when the inhomogeneity itself rotates in the opposite direction.
Three scattering vertical cylinders with the diameters of 1, 2, and 3 ¢cm can be mounted
on the mechanically rotatable frame. The distances between them were 9, 5, and 6 cm.
The length of the array in this part of the experiment, synthesized by moving a receiver

- at the depth z,=0.3 cm, was 36.5 cm. The depth of the source was 1.7 cm. The results

of reconstruction of the inhomogeneity spatial distribution from 32 projections are
presented in Fig. 4.23. In the experiments, the inhomogeneity was located off the
center of the acoustic path, where x;=a/2, but closer to the antenna at q-x,=25 cm,
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a=152 cm. These parameters were taken into account in summiation of partial images.
As shown in the images, significant interference distortions appear in the
reconstruction process, including the spatial-frequency range, where the useful signal
is present. This does not allow the suppression of the interference by simple methods.

In this section, the possibilities of the image reconstruction of large-scale
oceanic inhomogeneities by scanty-view systems, when the illumination and reception
have been carried out in the limited range of angles, have been investigated. The

Figure 4.23. Coherent (a) and incoherent (b) multi-view images of three cylinders .
reconstructed from 32 projections. (Adapted from [79].) '

features of the acoustic imaging in the Fresnel zone for multi-mode oceanic
waveguides have been analyzed. From the point of view of practical difficulties in the
design of acoustic-vision systems, particular attention was paid to systems consisting
of a few sparsely positioned hydrophones (the binocular system among them). The
analysis of the multi-view systems has been fulfilled both theoretically (analytically
and numerxcally) and experlmentally by physical modeling.

The vision problem is one from the more general set of scattering inverse
problems. The vision problem can be resolved by applying the tomographic methods.
In this chapter we have investigated only the problem of vision, i.e., the reconstruction
of the spatial distributions of secondary sources in terms of surface inhomogeneities
without reconstruction of their physical internal structures. In this case, one can obtain
the information on inhomogeneity localization in the observation area and its shape.

The results can be summarized as follows. First, it has been shown that for
measurements by horizontal antennas (the lengths of which are more than a few
Fresnel zones for observed inclusions), the  reconstruction of inhomogeneity
distributions are possible by consecutive angle scanning and focusing into each point
of the vision area. The spatial-resolution and vision-area bounds have been estimated.

Secondly, it has been shown that the Dark Field Method (in particular, in the
form of a posterior two-dimensional spatial filtration of the resultmg image). is
required to improve image characteristics.

Thirdly, it has been found that the application of the binocular observation
schethie (consisting of two receiving arrays) leads to the improvement of image spatial
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resolution in the longitudinal direction.

Fourthly, the limitations on the spatial resolution and vision area dimensions
have been estimated for receiving arrays, consisting of a few scanty hydrophones.

Fifthly, the dependence of spatial resolution on coherent and incoherent
summation of projections with possible use of Dark Field Method has been studied for
multi-view schemes.

The efficiency of image reconstruction methods has been examined by the
experimental image reconstruction. The experimental results have confirmed the
efficiency of the methods and algorithms used and have allowed for estimating their
applicability limits. . Thus, the distortions of complex scatterer image (for example,
three steel cylinders) apparently appear due to diffraction on "strong" scatterers
(according to the classification used in [41]), for which multiple scattering effects are
significant. The reconstruction of such inhomogeneities becomes substantially
complicated and requires the use, for example, of iterative algorithms [41]. Another
important causes of. distortions are the interference structures, arising from the
scattering from ‘random inhomogeneities and waveguide boundaries and from
waveguide modal interference. The reduction of random-inhomogeneity influence
may be attained by averaging of random data, if the spatial spectra of random
inhomogeneities and the signals of interest do not intersect. For the reduction of other
disturbances, a priori information on oceanic waveguide and observed
inhomogeneities should be taken into account in signal processing.

The analysis of possibilities for the reconstruction of vertical spatial-
inhomogeneity distribution reconstruction is of specific scientific interest. For the
illumination by low frequency sources (when propagation of only a few-modes
occurs), the reconstruction in the vertical direction is practically impossible. In the
case of high-frequency illumination (when the number of propagating waveguide
modes is high), vertical-distribution reconstruction is possible, but it requires the
special methods. of matched filtration using both vertical arrays and vertical
illuminating systems. Examples of these methods, based or angular selection and
weight sorting by vertical radiating and receiving arrays, have been considered in [50].
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Chapter 5:
EMISSION OCEAN ACOUSTIC TOMOGRAPHY

The reconstruction of spatial distributions of ocean noise sources is a subject
of Emission Ocean Acoustic Tomography. Three typical methods of Emission
Tomography are described in this chapter. These methods have been developed for
reconstruction of natural ambient noise (for example, noise of wind-driven surface
waves) and man-made noise. ,

5.1 EMISSION OAT FOR LOW-FREQUENCY SOURCES

A method of acoustic diagnostics of the ocean using the low-frequency noise
fields is discussed in this section. The integral equations that relate the intensity of
the sound ficld to the spatial distribution of noise sources are obtained. A spectral
tomography scheme is considered, and its effectiveness is estimated. As an example,
the spatial distribution of ship noise is reconstructed on the basis of experimental data.

5.1.1 The Basic Idea of Emission Tomography

Various modifications of transmission tomography have been proposed for
remote acoustic diagnostics of the ocean (see, for example, [117, 12]). The need to
use a large number of active radiation systems situated at the boundaries of the
investigated region complicates the engineering of the such systems. Thus, the
development of tomographic methods using the characteristics of "ambient" noise
fields generated by processes of interaction between wind and the water surface

" (dynamic noise), human engineering activity, and biological and seismic activities
may be very useful.

As a rule, the sources of ambient noise are distributed over the entire test range
of the ocean. Two types of tomography can be based on using the noise field: the
reconstruction of the spatial distribution of the parameters of noise sources themselves
(emission scheme) and a determination of the parameters of ocean meditim, based on
a use of a priori information about the noise sources. We discuss here only the first
type of problems. The second type is a special case of methods previously discussed.
The effectiveness is estimated, and the feasibility of emission tomography is
demonstrated by using experimental data. : :

As an example, let us to consider a horizontally homogeneous layered ocean
with an arbitrary SSP. We assume that the field of noise-acoustic surface or volume
sources is stationary and quasi-homogeneous with respect to the horizontal

135



coordinates; that is, /«R_, where / and R, are the spatial scales of coherence and

horizontal synoptic fluctuations of the sources. We consider the sources as a certain
set of the effective secondary sources obtained by spatial averaging over an area of
radius R(/«R«R,). We assume that in the azimuthal direction the radiation patterns

of the primary (non-averaged) noise sources are isotropic. Thus, each secondary

source has a locally isotropic radiation pattern in the horizontal plane. Ignoring the

specific physical mechanism of noise generation, which is not important for later

discussions, we characterize the spatial distribution of the effective secondary sources
. over the ocean region by the excitation coefficients P (r.)) of the normal modes of the

underwater waveguide, where » is the mode number, r=(x,y), x and y are the
. horizontal coordinates, and £ is the sound frequency.

Processes of sound scattering by inhomogeneities along the propagation path -
in the ocean change the energy spectrum of the modes [P |2, i.e., information about
the initial source may be lost. The intensity of noise at fiequency f is created mainly
by sources situated at distances smaller than or equal to R (/) -wf)' from the

reception point, where y(f) is the sound attenuation coefficient {104, 105]. The
effective radius, R, of the "noisy" region of the ocean from the particular source

diminishes with increasing frequency. Calculations [106, 107] have shown that the _
intensities, P |2, remain practically unchanged under the influence of volume

inhomogeneities (e.g., internal waves) at distances of the order of R , for frequencies

above 100 Hz. Thus, and the influence of volume inhomogeneities on the noise field
can be neglected. If the noise is generated near the surface, the energy of the noise
field is mainly concentrated in modes that interact strongly with the surface.
Accordingly, the aftenuation associated with sound scattering by a rough surface must
be taken into account together with the attenuation y(f) [8, 106]. We assumie that the
ocean waves are also quasi-homogeneous in this case. We consider the fluctuation
of the SSP under the influence of synoptic inhomogeneities to be insignificant, so we
can neglect its influence on the variation of the energy spectrum of noise-field modes.

Let us derive a relation between the noise intensity at frequency f and the
spatial distribution of the effective source power, {|P,|%), where () denotes statistical

averaging over the source ensemble. For the condition R_»/ the result of a Fouricr

transform of the complex amplitude of the sound pressure of the noise field at an
arbitrary point of the ocean waveguide can be represented in an approximate form as:

(0] P’
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where = is the vertical coordinate, ¢,(z,f) is the nth mode vertical eigenfunction at
frequency f, M /) is the number of propagating modes, « (/) is the modal horizontal
wavenumber, v,(r, /) is the attenuation coefficiunt of mode n duc to sound scattering

by the rough surface, 2(r,r ) is the ray joining points » and / in the horizontal plane, r”
is a current point on the ray 4. The attenuation coefticients, y,(r, /), in Eq. (5.1) are

assumed to be independent on the orientation of the ray & passing through the point
r”. This requirement is valid, for example, for an isotropic sea state. (Other
conditions that would lead to the same situation are discussed in [91].) From Eq.’
(5.1) we obtain the following expressions for the noise sound pressure and intensity
at the output of the ith receiving element, which is characterized by the mode-
excitation coefficients 4,(i,f) and the directivity function G(r,f) in the horizontal

plane:

- N
pr.f)= fder/G‘.(r/’f)): An(i’f)Pn(’/,f)l";"q 12y
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Representing the effective sources in the horizontal plane by a set of
uncorrelated point sources with a vertical radiation pattern corresponding to the mode-
excitation coefficients, P, [104], we can make the approximate substitution into Eq.

(5.3)

(P(r P " 0=V (r - "YP o, PP ).
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In the ocean, as a rule, the horizontal scales of mode interference satisfy the inequality
Ly = 27K, 7%, | «R, 50 that the interference terms (¥ P exp[-i(x, -« )|r,~r/|]
with n=m do not contribute to the total noise-field intensity I{r,./) in Eq. (5.3). We,

therefore, obtain instead of Eq. (5.3):

. p 5 / Q,‘(r /’f) YN’}
Ii(’pf)"ifdzr/IGl(’ ;f)!z*'l;_T/I—e 0 ‘ 5.4
and
N
ofr ',f)=12(f)21 14,GNOPP, D) expl - f asy, (', N1 (5.5)

2,

The integral equation (5.4) is a consequence of the Van Cittert-Zernike theorem. An
unknown spatial-frequency distribution of the power of the noise sources and the

modal-excitation coefficients, |P,|?, of the generated noise field can be determined

on the basis of Eqs. (5.4) and (5.5) from measurements of the noise intensity. In
general, the implementation of emission tomography scheme requires a set of
receiving systems with different positions, r, and differently oriented horizontal and
vertical radiation patterns, |G(r’,/)|2 and |4,(,/)|?>. The solution of Egs. (5.4) and
(5.5) for (|P,*» can be obtained on the basis of algorithms using standard
regularization schemes [108, 110]. In particular, the exponential Radon transform (by
analogy with Eq. (5.4)) has been inverted in [110] with allowance for a priori
information on the spatial distribution of the excitation coefficients. Censor, et al.,
[111] have analyzed a reconstruction algorithm that can be used to determined not
only the sources, but also the spatial distribution of the excitation coefficients. Such
an algorithm makes it possible, in principle, to determine the frequency dependence
of v(f) and v,(r,f) which can be then used to diagnose the rough surface of the ocean
from the values of the coefficients y, [86].

5.1.2 Features of Emission Tomography

Let us now discuss an important consequence of integral equation (5.4). We
assume that sound-attenuation effects associated with scattering by ocean waves are
insignificant. We consider a receiving system situated at the point (x,»)=(0,0). We
drop the subscript i for this system. We also assume that (P NA=R O, SO
that the function, Q(r, 1), describing the power distribution of the noise sources in the
two-dimensional space of horizontal coordinates and frequency, is factorable:

Q) =02\, (5.6)
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where
N
QN =1S )Z_; 4 NDIPRLN.

Using Eq. (5.6), we obtain from Eq. (5.4):

(f)_(;(()f) _fdr 'q(rye Y, (5.7)

where

2n

q(r’)=fd¢PIG(r LOIP0,(r9),
]

where x=r’cosg and y=r'sing. It is evident from this result that, when the spectral
functions, Q,(/) and y(f), are known, the problem of reconstructing the noise

sources, ¢(r), is reducible to the spectral tomography scheme [108, 109]. The
function Q(f) is determined from experimental data or from the theory of noise
generation. If the receiving system has a sufficiently narrow radiation pattern,
|G(r,9)|?, then the spatial distribution of the sources subtended by the radiation pattern
can approximately be assumed to be dependent only on the distance from receiver.
We can set |G(r.¢){%=~08(p-y), where vy is the angle, at which the axis of the radiation
pattern of receiving system €(y) is oriented relative to the x-axis. Whereupon, we
arrive at ¢(r)=6 Q,(r,y). Consequently, the reconstruction of the two-dimensional

field Q,(r) does not generally require a set of receiving systems with different
horizontal coordinates r,. An analysis of the noise spectrum at one receiver makes it
possible to reconstruct the spatial distribution, Q,(r,y), along each ray, <(v), on the

basis of the solution of integral equation (5.7). The set of all one-dimensional
distributions obtained for the family of rays gE(\u) (0<y<m) then gives the required field .
0,(r).

Experimental data used in solving such problems are always approximate, so
that the values of the parameters reconstructed by emission tomography are also
approximate. The range of admissible deviations of the reconstructed values of the
parameters from their true values characterizes an effectiveness of the particular
method. For the spectral tomography scheme we estimate the spatial-resolution scale,
‘which is used to determine the possible error in the source localization. Let us use a
spatial distribution model of the form q(r) gd(r-a). We obtain the following
expression for it from Eq. (5.7):
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J()=q exp(-y())a), :
(5.8)
K(f)=10log!(f) = 10log O (f)+1Clogg-B(/)a,

where K(f) is the level of the noise ﬁeld,' B()=v(f)10log(e) is the attenuvation
coefficient in dB/km. Let us denote (g,,a,) as the true values of the source parameters

of the source and (g,,4,) as the reconstructed values. Let B,(/) describe the true
sound attenuation, and let ,(f) describe the estimated attenuation. In a certain
frequency interval, £, <f<f,, Af=f,-f,, we investigate the levels of the sound field, k(1)
and K,(f), corresponding to the quantities (¢,,4,,8,) and (g,,4,,,). We introduce the
average value of noise-level measurement error § in the interval [£,,]. The random

error of the measurement of the noise level at an individual frequency can be much
greater than 8. Consequently, the entire interval [f, f,] should be used in estimating

the source parameters in the general case when no a priori information is available.
In this case, obviously, the difference between the exact value, X,(f), and the

measured value, K,(f), of the noise level satisfies the condition

A
f dfK (1) -K /) <AfE. ' (5.9)
%

If the attenuation is known exactly, B,(f)=B,(f) and g,=g,, we obtain the
spatial-deviation scale on the basis of Eq. (5.9) and the calculations in Eq. (5.8):

% 3
Aa=lal-a%1 =5 —Al;,ffdfﬂf(f) : (5.10)

It is evident from this equation that the scale Ao is determined by the frequency
dependence of the attenuation coefficient B(f). There are several well-known
dependencies for p(/) {112] which are used to approximate diverse experimental data
on sound attenuation in the ccean. The scale Aa is plotted as a function of f, in Fig.
5.1 for Vadov's and Toetz's dependencies, which are encountered quite often. It
follows from calculations using the actuai error value §-0.5 dB that the spatial-
deviation scale, Aa, is greater than 100 km in the low-frequency range. The scale Aa
increases as the frequency f, decreases. Acoustic spectral tomography becomes
ineffective for ;<200 Hz, when the attenuation is determined by Toetz's equation.
The scale Aa does not change significantly, when the width of the frequency interval,
Af, is varied.

Equation (5.10) does not allow for the source localization error that results of
the error, £AB, in the determination of the coefficient p(f). If ¢, =q,, we infer from

Eq. (5.9) that the domain of possible values of the source position, a,, for a
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Figure 5.1. Deviation of the estimated source | Ana, km
location from its true value as a function of the |

upper {requency limit for Vadov’s (1,2) and
Toetz’s (3,4) dependencies for the attenuation | 600 |-
cocfficient. (Adapted from [58].)

183 fpo=2f,
284 f5=5f4
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" reconstructed value, a,, is determined by the condition
max[0,(1+B-F)a,)sa <(1+B+F)a,, if p,=p,+Ap, or by the condition
max([0,(1-B-F Ya,] <a, smax[0,(1-B+F )a,], if B,=B,~AB, where

5
B=(Aa)*(AB/SAS) f drp,(f),

4
F=[B2-(ABAal®)? r(Aala)?]".

The boundaries of the domain of possible values of «, as a function of the frequency £,
for an octave frequency band, f,=2f,, are piotted in Fig. 5.2. An analysis of the plots
shows that the error of the determination of source position increases considerably

a,, km
G000

Boundaries
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b lower

400

‘Figure 5.2. The boundaries of possible
estimated source location as a function of upper { 200 |~
frequency limit for Vadov’s (1,2) and Toetz’s
(3,4) dependencies for the attenuation
coefficient for AB=5+10"* dB/km and 5=0.5 dB .
and for (1 & 3) a,=500 km, (2 & 4) a,=1000 .
km. (Adapted from [58].) ©.o0




with increasing distance between the source and the receiver. Moreover, the
effectiveness of spectral tomography is also lowered for frequencies £, <100 Hz, when
the attenuation is described by Vadev's equation.

Another parameter characterizing the effectiveness of spectral tomography is
the sensitivity of the method to the variations of source power. We infer from
condition Eq. (5.9) for a,=a; and B,(/)=B, (/) that 10|log(q,/q,)| <8, i.e., the error of
reconstruction of the level of the sound field radiated by source cannot be smaller than
the average error of measurement of the noise level over the entirc frequency interval.

_ Our estimates show that the scheme for acoustic spectral tomography of the
ocean is efficiently applicable for the frequencies >100-200 Hz. To illustrate its
practical feasibility, we consider reconstruction of the spatial distribution of noise
sources on the basis of published experimental data of the measurements of the
low-frequency noise spectra [145]. Figure 5.3 shows the hydrological conditions of
the experiment. The sound channel made a smooth transition from a deep-ocean-type
channel (in the range interval x<a=~ 1100 km) to a surface-duct channel. Hydrophones
A and C were located at two stations in the horizontal plane on the axis of the sound
channel (i.e., (x=0,y=0) and (x=a,y=0), respectively). The spectral intensities 1(/) and
11 of the noise were measured at these two stations, and the results were averaged
over a long period of time (of the order of 24 hours).

0 0 a x, km
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Figure 5.3. The bathymetry and range-dependent| 4 Y ' bottom
sound-speed profile for an experiment on the. = "-"ﬁpﬁ A,C noise meas.
measurements of low-frequency noise spectra. K 1,2 SSPs
(Adapted from [58].) z, km 3 sound channe! axis

The region x>a was characterized by heavy ship traffic. The noise was clearly
decisive in the frequency interval 10</<240 [145]. We shall assume below that the
noise fields at the measurement stations, 4 and C, were produced entirely by ship
noise. Ii can be readily estimated that the variation of the sound-speed profile (see
Fig. 5.3) has an insignificant influence on the noise intensity at the points on the axis
of the sound channel [145]. We introduce the average spectrum, 0,(f), of noise
radiated by ocean vessels within a large ocean region and within a long period of time.
We can then make an assumption that the spatially averaged source function, Q¢, 1),
is approximately factorable (see Eq. (5.6)). For station 4 we determine the spatial
distribution of the source power, ¢(r) (» is the distance from station 4 to the noise
source in the horizontal plane), on the basis of the spectral tomography equation, Eq. -
(5.7), using the spectra I,(f) and I.(f) given in [145]. To find Q,(/) and test the
validity of the solution, it is necessary to know a priori the spatial distribution of
noise sources, Q,(xy). We choose a simple model in accordance with data in [145]:
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O,(xy)=0 for x<a and Q,(x,y)=1 for x>a. Then we assume the model for the spatial

noise distribution: ¢(r)=0 for r<a and g(r)=2arccos(a/r) for r>o. The measured
spectral intensity at stationC is: 7.=n0,(")4{f). We determine the spectrum O,(f)
from the last relation, whereupon we can then reconstruct the spatial distribution g(r)
from the measured spectrum 7,(f). The reconstruction resuits are shown in Fig. 5.4.
The calculations are carried out in the interval 40<f<200 Hz for the attenuation
described by Vadov's equation [144]. A program developed in [144] on the basis of
Tikhonov's regularization method [86] for the solution of the Fredholm equations of
the first kind for a set of non-negative numbers was used to solve Eq. (5.7)
numerically. A regularization parameter, a, was selected in the prcgram in
correspondence with the generalized residual theorem [86]. A comparison of the
postulated and reconstructed distributions indicates fairly good agreement between
them within allowance for the deviation scale (see, for example, Figs. 5.1 and 5.2).

11 9@ —
- —— modeled
| - - ~-—-reconstructed
- ) ~ r km
0 1000 2000 3000

Figure 5.4. The model and reconstructed spatial distribution of noise sources for r;=4000 km
and a=6+10". (Adapted from [58].)

The presented spectral tomography scheme can be used to reconstruct the
spatial distribution of not only ship noise, but also dynamic (ambient) noise. In fact,
at low frequencies ambient noise admits the factorization of Eq. (5.6) with the
function Q,(n)=(V(r)/V,)', where ¥(r) is the velocity vector in the surface layer of the

atmosphere, ¥, is a certain fixed value of the wind velocity, and v is a power that

depends slightly on the frequency and wind velocity (1<v<3) [138]. Thus, the wind-
velocity field /(r) can be reconstructed on the basis of Eq. (5.7).

52 MAXIMUM LIKELIHOOD ESTIMATION OF TOMOGRAPHIC
SIGNAL POWER IN THE PRESENCE OF AN UNKNOWN NOISE
FIELD

The maximum likelihood estimation (MLE) of the parameters of noise signat,
emitted by an underwater noise source, from sensor-array data has received
considerable aitention in tomographic investigations. As a rule, MLE solutions are
computationally expensive. Generally, when a priori information about the
covariance matrix structure or about covariance components is available, the MLE
_ performance can be greatly improved by allowing the simpler implementations of the
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MLE scheme. This and closely related problems were investigated in [147,149, 151].

Problems of structured-covariance-MLE have been studied intensively.
Problems of tomographic signal and noise power estimations have been considered
for different cases of structured covariance. The simple MLE of signal and noise
powers has also been derived for the case of low-rank signal and noise covariance
matrices, which have been known a priori except for scaling. The MLE of signal and
noise powers has also been obtained for cases of full-rank noise-covariance matrices
and arbitrary-rank signal-covariance matrices, which have been assumed to be known,
except for scaling.

However, in many practical situations an assumption of known, except for
scaling, noise-covariance matrix is unrealistic. Actually, in these situations sensor-
noise powers may be different and unknown, because of non-ideal antenna channels
and problems related to antenna calibration. Another reason of the presence of
unknown noise is the influence of acoustic reverberation. Reverberation generates the
external noise, which is usually uncerrelated between array sensors and has different
powers in each sensor due to medium inhomogeneities.

In many references the problem of signal-power estimation is discussed on the
besis of an assumption that the spatial-covariance matrix of the received signal is a
rank-one matrix and is known a priori except for scaling. Such an assumption
corresponds to the situation when the received signal has an a priori known wavefront
and is fully coherent within the array aperture. However, unlike earlier works, the
noise covariance matrix is assumed to be an unknown diagonal matrix. In other
words, the noise is assumed to be uncorrelated and to have different unknown
variances in each array sensor. We have derived the simple ‘Approximate MLE
(AMLE) of the signal power assuming that the signal is weak and that the number of
recorded signal samples is large.

The variance of the derived estimator has been compared analytically with the
exact Cramer-Rao Limit (CRL) of this problem [139]. Such a comparison allows us
to prove that the AMLE asymptotically converges to the CRL for the majority of
practically important cases (not only in a weak-signal case). Furthermore, in the case
of non-identical noise powers, the statistical performance of the AMLE has been
compared with the statistical performance of the well-known Exact MLE, which is
based on matched-filter processing and is usually referred to as a conventional
beamformer. The significantly better performance of the AMLE has been
demonstrated. The analogy between these two estimators has also been considered.
This analogy enables one to generalize the AMLE for the case of well-scparated,
weak, multiple sources with unknown locations and to consider this estimator as a
type of conventional beamformer for arbitrary and unknown noise powers. The
estimation errors of the AMLE have been compared with the CRL by numerical
simulations [139, 140]. Simulation resuits show that the root-mean-square estimation
errors of the AMLE are very close to the CRL for a wide range of signal power and
for arbitrary difference between unknown sensor noise variances.
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53 TOMOGRAPHIC RECONSTRUCTION OF MOVING ACOUSTIC
NOISE SOURCES

Another type of tomographic investigation is related the connection of the
spatial distribution of noise sources and far-field reconstruction using the near-field
-measurements [151-153].

At present so-called near-field methods are broadly used for the determination
of the antenna radiation patterns. Since the 1970's, a reliable technology based on
near-field methods has been developed for the measurement of microwave-antenna
characteristics. Both the radiator far field and the amplitude and phase distribution
of elementary sources along a radiator can be reconstructed with high accuracy by
processing the near-field data. Proceeding from the fact that the measurements are
made near a radiator, the main merits of near-field methods are the possibility using
decreased radiation power and the reduction of error components caused by medium
propagation and reverberation effects.

NF methods in acoustics have been developed for the measurements of
extended sound sources with a priori unknown spectrum (e.g., for diagnostics of noise
radiation of cars; ships and so or). The final aim here are the reconstruction of
angular-averaged, intensity distributions in the far field and the identification of the
equivalent distribution of acoustic elementary sources along a radiator from measured
data. Such near-field methods should be generalized as follows:  Firstly,
reconstruction methods should te generalized for broadband-spectrum signals having
random nature. In this case the second-order statistical moments of acoustic field
depending on spatial coordinates and frequency should be estimated. Secondly, an
algorithm’s robustness against external noise should be investigated, because, in many
cases, the acoustic signals of interest do not exceed the background level. Thirdly,
radiator motion and signal propagation (at least, boundary reflections) should be taken
into account.

For low frequencies the most accessible measuring system is a linear array. On
the other hand, there is a broad class of acoustic radiators essentially oblong along one
of coordinate axes that can be studied by using linear arrays. (Radiation from such
geometry sources may be described by a set of elementary sources on a segment of
straight line.) Investigation reveals that, in these cases, noise-source reconstruction
can be carried out cerrectly.

All the above mentioned conditions must be taken into account for the use of
near-field methods for the determination of acoustic-radiator characteristice. The
theoretical part of the near-field method consists in a design of algorithms of
measured data transformation and in a substantiation of their correction, whence the
requirements on receiving system can be formulated.

Proceeding from the random nature of the radiation field, we propose that the
signal processing procedure should be divided into four main steps. The first step is
the narrowband filtering of received signals. The second one is the execution of the
algorithm of the spatial processing: the transformation of the array signal vector, Py

having passed through the narrowband filter into a vecter ot the momentary direction
pattern, d;, or into a vecter of the momentary distribution of discrete equivalent
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sources along radiator, m,, for every time point ;, and for every narrow frequency
band. Then, ;

d=1p,. ‘ (5.11)
The matrix, [ ;» has been derived on the basis of two approximations: the high-
frequency approximation for solving appropriate integral equations (HFA algorithm)
and the MLE with regularization (MLER algorithm).

The HFA algorithm had been originally developed for the measurement of
electromagnetic antenna characteristics, and then it has been modified for acoustic
applications [151]. The HFA algorithm is notable for simplicity of realization and
physical interpretation. It permits easy estimation of the influence of measuring
system parameters on the final result. For the HFA algorithm, the matrix T ', does not
depend on time and is determined as '

il 00
T - g Jz‘p(xn,ek R (5.12)

where d, is the array spacing, .c is the average sound speed. The functions p(x,.8,)
and /(x,.9,) are determined only by the angle 6,, characterizing the directional pattern
in the far field and by the geometry of the mutual disposition of the receiving array
and the trajectory of the source motion.

This algorithm is not optimum relative tc the background noise and is basically
oriented for free-space propagation. These facts may lead to an increase in the total
reconstruction error for measurements in inhomogeneous noisy media. As a result,
an optimum algorithm based on maximum likelihood principle for the estimation of
acoustic-radiator characteristics from near-field measurements was considered. For
the realization of the MLER algorithm the linearization of maximum likelihood
equations for certain models of the signal and external noise covariance matrices is
used. For the MLER algorithm, the matrix has a form:

éj+sf)“Gj, (5.13)

where the superscript + denotes conjugate transpose, 6 ; Is the matrix of mapping the
equivalent sources into measured samples, when the propagation conditions can be
taken into account. The matrix U is the standard Fourier transform of the estimated m ;
into the momentary direction pattern. ‘The regularization procedure for the inversion
of the matrix é;éj indicates the presence of small eigenvalues in spectrum of this
matrix. This allows for the impossibility of unbiased estimation of source
characteristics by numerical methods. The optimum value of the parameter can be
found from a priori known signal-noise ratio. ’

The third and fourth steps consist of the estimation of the second-order
statistical moments (averaged intensity structure) by time averaging with weighting
coefficients and the compensation of externai noise:
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D, =D@®,) = Z Y14 12D . ' (5.19
J

The introduction of the weighting coefficients follows from the existence of angular
sectors of trustworthy reconstruction (Trustworthy Reconstruction Sector - TRS) of
direction pattern for the current source location relative to the array [151]. The
estimation error is much smaller in the TRS than outside of it. The v, calculation for

this procedure of the so-calied "projection synthesis" is based on the determination
of the TRS for model sources.

Some components of the total error of radiator-characteristic reconstruction
have been investigated. As the main components of total error, the following factors
have been chosen and analyzed [152]:

a) The errors associated with different approximations for designing
reconstruction algorithms (e.g., an approximate solution of the integral
equation, radiator identification by a finite number of elementary sources,
finite dimensions of receiving system);

b) The error caused by external noise;

c) The error associated with a non-ideal receiving array transmission channel;

d) The error caused by the inaccurate estimation of the mutual disposition of
radiator and receiving array; and

e) The error associated with inaccurate information about propagation
channel and its fluctuations.

The results of extensive numerical simulation and source-characteristic
reconstruction in natural experiments have shown that the estimates based on the
above-mentioned algorithms have a high degree of accuracy. Furthermore, the MLER
algorithm allows for adapting the signal processing to complex source structure and
propagation conditions. -Besides beirig used for the investigation of noise acoustic
objects, the MLER algorithm can be developed for a broad range of applied problems
{for example, for estimation of hydrological and other ocean parameters, for acoustic
monitoring, in medicine diagnostics, etc.).




Chapter 6:

TOMOGRAPHIC RECONSTRUCTION OF OCEANIC
INHOMOGENEITIES BY USING PARTIALLY COHERENT
ACOUSTIC WAVES

6.1 COHERENT FIELD STRUCTURES OF NOISE SOURCES
IN OCEANIC WAVEGUIDES

Ccherent acgustic signals in the ocean fluctuate strongly in the space-time
domain due to the interference between sources, multiple propagation paths and
scattering from random boundary and volume inhomogeneities. These fluctuations
in space and time, which we may call spatial distortion and interference noise,
decrease the sensitivity and accuracy of measuring and imaging systems for
tomographic reconstruction.  Similar problems are well-known in optics and
ultrasonic imaging [83, 120, 123]. The interference of partial waves, for example,
normal modes or rays, has high-frequency spatial and temporal variations. Taking
into account the complex multipaths of noise signals in inhomogeneous media for
spatial and temporal domains, the high-frequency interference structures can be
described statistically, if the number of partial waves is large enough.

To reduce interference noise and spatial distortions for the purpose of
improving high-accuracy tomographic measurements, different methods of averaging
and filtering can be used {104, 105]. Possibilities for accomplishing this task in
optical and ultrasonic imaging are provided by the use of partially coberent (PC)
sources [80, 161]. The use of PC acoustic waves for tomographic reconstruction of
inhomogeneities in oceanic waveguides has previously been introduced in the
literature [39, 80-82, 155, 161]. The optimal elimination of illuminating-acoustic-
wave coherence consists of increasing the sizes and frequency bandwidths of noise
sources. This leads to the elimination of the interference noise and diffractive
distortions by allowing the possibility for space-time filtering.

In this chapter the investigation of space-time structures of PC acoustic waves
in oceanic waveguides is discussed from the point of view of recommendations for
the use of PC sources for tomographic reconstruction of oceanic inhomogeneities.

6.1.1 Partially Coherent Space-Time Waves in Gceanic Waveguides

Formulation of the basic concept. The physical problem formiulated in the chapter
introduction can be presented as a stochastic problem for the excitation of PC space-
time waves by spatially localized noise sources, g(p,00), where p=[¢n,{1=[e,{] is a given
point in the spatial distribution of the noise source in a layered refractive waveguide
with the SSP, ¢(z), and an angular frequency, w. (The geometry of the problem is
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shown in Fig. 6.1.) To formulate and solve the problem, physical models of spatially
localized noise sources, as well as models of layered waveguide, must be introduced.

B-lEndl-1ad)

‘ﬁ/
¥ z
Figure 6.1. Geometry of the problem. (Adapted from [161].)

ﬁ:[x,y,z]:{?,z}

The particle velocity potential, ¢(R,7), where R=[x,y,z]=[r,z] is a given point in
a waveguide, can be expressed as a sum of partial waves from each point element of
the noise source with the complex amplitude ¢(p,w):

(p(R,l)szffq(p,m)e G (p,R,0)dpdo, ~(6.1)

where G(p,R,») is the Green’s function for the inhomogeneous propagation medium.
Correlation analysis will be used for the description of stochastic waves under
the assumption that parameters of our problem allow the use of the ergodic theorem.
We assume that the noise sources satisfy the hypothesis of statistical uniformness and
spectral purity. This means that the space-time dependencies of the source function
are factorized. We also assume that source coherence can be separated from medium
coherence because of the scale differences. The coherence function of the received
signal can be defined as: .

T (1) =T (1 ) =<Q(R LG (R,.1,)>
Then, using Eq. (6.1) and above-mentioned assumptions, we arrive at:
Foltet)=[ [ [ [<a(pr0)g ‘(0007 ™ <G(p,.R,0,)G *(p,,R,0,)>
*dp,dp,de,do, , - (6.2)

where <.> denotes an ensemble averaging for either the source or the medium.
Further, we may also assume stationarity of the coherence function when it depends
only on a time difference =1,-¢,.
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Noise Source Models. To continue a more detailed analysis of PC waves in the ocean,
we should specify source-function models, <¢(p,.0,)4 “(p,.»,)>. Appropriately chosen

source models can simplify considerably the ccherence function in Eq. (6.2). It is
important that these models should be related to real noise sources, since such sources
may prove useful for acoustic probing of oceanic inhomogeneities. In some cases
narrowband spectral components, present in ship noise, can be singled out as quasi-
harmonic signals by a receiver [40, 138, 139].

Model A - Broadband Point Source. For model A, we use the noise-source function
given by g(p,w)=4 (p) Vg(w)d(p-p,), Where g(w) is the energy spectrum of uncorrelated

spectral components and p, determines a location point of the source. The source
coherence function for this model becomes:

<q(p,,0,)7 *(P,0,)>=A(P)5(p, -p,)g (0 )5(w, -,), 6.3)

where § denotes the Dirac delta-function. Using Eq. (6.3), the coherence function at
the receivers (Eq. (6.2)) can be represented by the following expression:

I,)=4 02 ®,) f &(w) <G(p ,.R,,0)G *(p ,.R,,0)> e “"dw. (6.4)

Model B - Némb_and_m‘;n_d_ed_s_og;cg. The source-coherence function for Model

B can be expressed as

(o, ~wg)?

<q(p|7m|)q ‘(pz’m2)> =4 2(p|)smc(p1 _pz)go(mo)e bw 8((01 -0)2) > (65)

where 4%(p) determines the spatial form of the noise source, g,(w,) specifies a
narrowband spectrum centered at the frequency w,, and sinc x=sinx/x. Substituting Eq.

(6.5) into Eq. (6.2) and assuming that the spatial-coherence scale is small, we obtain
the coherence function for the stationary case:

T',(0) = golwg)e ™ f A%(p)G(p.R,,0))G “(p,R,,0))dp. ' (6-6)

Model C - Horizontally Moving Narrowband Point Source. Let model C be a ‘
noncoherent, narrowband point source, which moves for a distance L along the -axis
at a depth ¢, and the receiver is a vertical array on the line R=[q,0,z] with
hydrophones at depths between =, and =, (see Fig. 6.1). If the averaging time of the
receiver is more than the characteristic time of motion, then the source function is:
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(o, -n:o)l

<‘I(P'p(01)q ‘(p2:m2)> =4 2(11) 8(&_0) S(C_C())gg(mo)e 8o’ 5(“)1 —(bz) s (67)

where 42%(n)=(1,n<L; 0n>L). The coherence function is
T ,(0) = ge ™ [4Xm)GM.5pa.2,,00) G "G, 70,)dn . (6.8)

Let us note that we have chosen the noise-source models, 50 that in one case
(model A) the source is localized in space (point source), and in another case (model
B) it is localized in frequency domain (narrowband source). The final case (model
C) is a combination of models A and B, where the narrowband point source also
moves. The resulting coherence functions (Egs. (6.4), (6.6), and (6.8)) have similar
forms. They indicate the smoothing of the space-time interference structure of I' 120

due to the influence of the source size, 4%(p), and bandwidth, g(u))
Propagation in a Waveguide. Propagating signal in an inhomogeneous waveguide

can take various paths (see Fig. 6.1). Such propagation can be represented as a sum
of the waveguide partial waves:

N
G(p,R,m)=Z G, (p.Rw). (6.9)
n=1

For example, such partial waves can be described by using the modal approximation
[8:
G, (0. R.0)=0,000,)e ™ (le-rli )%, (6.102)

where @, and 4, denote vertical eigenfunctions and horizontal modal wavenumbers

of the unperturbed wavegulde respectively. We can also rewrite Eq (6.9) by usmg
the ray approximation:

G,(pRo)=a,e™", ' (6.10b)

where a, and kS, are the amplitude and phase of a partial ray, and & is thé

wavenumber. It should be noted that both representations descrlbe the real wave
field, so they can be transformed one into another [8]. -

6.1.2 Partially Coherent Structures of Acoustic Waves in a Wavegnide

The substltutlon of Eq. (6.9) in éither of its two forms (Eq. (6. IOa) or (6.10b))
into Eq. (6.2) (or into the subsequent forms, Egs. (6.4), (6.6), or (6.8)) would lead to
the possibility of splitting the coherence ﬁmctlon into two terms:

T p@=TH@)+T,). A - L (611)
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The first term represents the energy sum for the ray paths or modes with the same
nurnber (i.e., m=n) in the expansion of <G()G*(.)>, and the second term is the
interference between ray paths or modes (i.e., m=n).

The analysis of these equations shows that, for the scales associated with the
interaction of partial waves with large differences in indices, the increases of source
size or frequency bandwidth of the noise source smooths the space-time variations of
the acoustic field. For the limiting case, when all variations are eliminated, the size
of the source and the noise frequency bandwidth must be larger than all scales of
variations of <G()G *()> in the space and frequency doinains. Such fields can be
considered as noncoherent acoustic fields. The more exact definitions for coherent
and noncoherent acoustic fields in the ocean require taking into account the properties
of oceanic waveguides as spatial and frequency domain filters.

To illustrate some of the concepts and provide a basis for further development,
let us examine two cases: :

Case I - An Application of the Ray Representation to Model A: The substitution of
Eq. (6.10b) into Eq. (6.9) and then into Eq. (6.4) gives

IL@=4;PY [g@a,a, e do. (6.12)

Case 11 - An Application of the Modal Representation to Model C. Assuming the
small-angle approach, we can obtain the coherence function by the substitution of Eq.
(6.10a) in Eq. (6.8):

T8y ™ 0, ()05 ) [A2mexpliln-ya? o] e, -t~ +=] e, 1«

(6.13)
x[ In_\i a2+:lz IKm]—I/ZJ [ ]n_vaz +:22 lK"]_]'lzdl] ‘

The integral in Eq. {(6.13) determines the interference noise elimination for different
spatial scales. If L«a, then Eq. (6.13) can be simplified further. For the examples
considered later, we shall use a bi-linear SSP in the (x,z)-plane defined as
[z(m),c(m/5)]1=]0,1500], [200,1470], {3000,1550].

According to the analytical results of preceding sections, acoustic waves in
oceanic waveguides can have significant intérference noise due to the interaction
among partial waves in a waveguide, as well as due to their interaction with
waveguide inhomogeneities. This distinguishes the acoustic ocean imaging from
optical and ultrasonic imaging, where waveguide interference is not a problem. For
short scales, the interference structure in the space-time domain can be imaged like
random patterns and can be described statistically.

152




6.1.3 Coherence Transfer Properties

In this section we analyze the interference structures suggested by the
separation in Eq. (6.11) into two terms. Let us introduce the term Coherence Transfer
Properties (CTP) that describes a change of the space-time function as a signal
propagates from a source to a waveguide point. This change is associated with Eq.
(6.2).

Vision Coefficients for Interference Structures. The high-frequency space-time
interference structure, which is produced by many partial waves characterized by very
different parameters, can be defined as an interference noise. Coherence can not be
maintained for long distances due to high dispersion of the parameters among those
partial waves. To describe the space-time interference structure, we introduce a
quantity, B(R)=T},/T},, that is the time-averaged, single-receiver energy part of the
coherence function divided by the interference part. This quantity is a special ratio
of CTP that we call the Vision Coefficient (VC) of the interference structure. Figure
6.2 shows VC maps of B(x,z) in the (x,z)-plane for Case I. The waveguide is bi-linear
with randomly distributed inhomogeneities in phase with different standard deviations
(in radians per meter of ray-path length). The noise signals have a bandwidth of 1 Hz.

Analysis of the energy and interference terms, leading to the spatial

: " : @
100 200 300 0 100 200 300
Range (km) Range (kin)

Figure 6.2, Vision Coefficient maps of the interference structure B(x,z) in the (x,z) -p.iane for
Case 1 for different bandwidths (a) 1, (b) 10, (c) 100, and (d) 1000. (Adapted from [161].)
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distributions of VC in Fig. 6.2, suggests that a diversity in paths, coupled with strong
random phase dispersions among these paths, leads to a strong interference and rapid
decorrelation with increasing distance. On the other hand, in regions where the
energy terms dominate, coherence is maintained for greater distances. These results
suggest a method for the analysis of the wave structures corresponding to the
interference of rays (i.e., I: (m#n)) in Eq. (6.11). The energy part of Eq. (6.11) (i.e.,
E:(m=n)) has a broadband spatial spectrum, including large-scale interference, that
can be smoothed by using large-scale-noise sources.

o

0.s
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Depth (km)
n

Depth (km)
o
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Distance (km)

Figure 6.3. Example maps of (a) MDTT, (b) DDTT, (c) MinTT for a
source depth of 100m. (Adapted from [161].)
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Inhomogeneous structures lead to complex space-time variations of acoustic
noise signals in oceanic waveguides. CTP, defined in terms of time delays, can
provide a too! for the interpretation of the space-time variations of noise signals. For
example, the Mean Difference in Travel Times (MDTT) for different rays at different
receivers, At__, as well as their Dispersion Difference in Travel Times (DDTT) can

be used for such an interpretation. The Minimal Difference in Travel Times
(MinDTT) is also useful for the analysis of the noise coherence structures in
waveguides. Figure 6.3 shows examples maps of MDTT, DDTT, and MinDTT
calculated for a bi-linear oceanic waveguide.

Double Scaleness of Coherence and the Coherence Window. Interference noise can
be isolated relatively simply in optical and ultrasonic imaging as short-scale, space-
time variations. Similar operation for acoustic noise signals in oceanic waveguides
can be performed more effectively by using another method. This method uses the
natural space-time filtering properties of oceanic waveguides that image signal
structures localized in the space-time domain [112].

Other characteristics may also be imaged in analyzing PC structures in oceanic
waveguides. For example, Fig. 6.4 shows the dependencies of ray-cycle lengths,
L(v,), on initial path angles, «,, for a bi-linear waveguide. As analysis shows, these

dependencies have relatively smooth local extrema, which determine the formation
of ray bundles (or more generally, partial-wave bundles).

=030 —-020 ~0.10

Figure 6.4. Dependencies of ray-cycle lengths, L(c,), on initial path angles, o, for the

bi-linear waveguide for depths (1) 50 m, (2) 190 m, (3) 1260 m, (4) 2000 m, and (5)
2600 m. (Adapted from [161].)

The coherence in the bundle is maintained for propagation to long distances,
because within a bundle or beam, partial-wave parameters differ only slightly.
Another situation exists for rays or waves outside a bundle. These lose coherence
with the bundle partial waves very rapidly due to large differences in their parameters.
Thus, the effective method for interference noise isolation for oceanic waveguides is
the representation of the coherence function as coherent sums of partial waves within
the bundles and as incoherent sums between them:

155



o=y, ¥ o+ Y Ik, (6.14)

k=1 mnel, mneh,

where A, (k=1,....,s) denotes the localized bundles. Each bundle is formed by a set of

PC waves. On this basis, we can introduce two different scales of coherence and
interference variations for oceanic waveguides: the first scale is associated with a
smooth interference structure within partial-wave bundles, while the second scale is
associated with diffuse interference of partial-wave components outside the bundles.

To simplify the physical meaning, we can interpret this two-scale structure as
the existence of space-time coherence "windows" in oceanic waveguides. As
numerical simulation has shown, the space-time properties of these windows are
determined by waveguide characteristics. They also depend on the source depth.
Random oceanic inhomogeneities can distort an image by their influence on both
scales. But very strong perturbations of the ocean environment are necessary to
eliminate the coherence window (see Figs. 6.2 and 6.3).

Investigations of PC space-time structures of acoustic waves in waveguides
produced by spatially localized noise sources reveal interesting phenomena associated
with the influence of constructive and destructive interference of partial waves. The
existence of partial-wave bundles (i.e., waves having close parameters and
maintaining the coherence along ray paths or modes for long distances) or coherence
windows have been found. Such coherence structures appear as beams of complex
form in space and pulses in time. Another part of the interference structure in
waveguides is relatively uniform distributions of random or diffuse terms. The
diffuse component of the acoustic field can be effectively smoothed by using PC noise
sources.

6.2 POSSIBILITIES FOR THE USE OF PARTIALLY COHERENT
ACOUSTIC WAVES FOR TOMOGRAPHIC RECONSTRUCTION

The method of tomographic reconstruction of SSP perturbations in the ocean
using low-frequency acoustic waves has been successfully developed [12, 23, 62].
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Figure 6.5. SSPs for transition across a front. o h

(Adapted from [155].)
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using low-frequency acoustic waves has been successfully developed [12, 23, 62].
Current methods are based on the analysis of ray or mode travel times or other
characteristics, such as phase, amplitude and intensity measurements. A goal of this
section is to describe the possibilities of using PC acoustic noise sources for
tomographic reconstruction of the spatial forms of inhomogeneities.

A good quality of tomographically reconstructed images of oceanic
inhomogeneities can be provided by highly accurate acoustic measurements.
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Figure 6.6. Shows the modeled propagated-signal level for the specific
placements of the front: (a) no SSP transition, (b) transition begins at
350 km, and (c) transition begins at 150 km. (Adapted from [155])

However, technical and physical factors can limit such accuracy. First, there are
difficulties related to the accurate positioning of the receiving array, synchronization,
optimal filtering, and so on. Second, measured signals are also influenced by
unresolved nonuniformities and nonstationarities in the ocean environment that
produce undesired space-time variability. And third, additive background noise
lowers the precision of estimates. If the influence of the background noise can be
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remaining interference noise can be reduced by optimal space-time filtering that
requires only the use of a priori information about an observed object and the random
variability of ocean environment [12].

Motion of oceanic inhomogeneities limits observation times, and the finite
spatial dimensions of measuring systems sets the resolution limits. To extend these
limits, one can apply spatial or frequency diversity by using large partially coherent,
broadband noise sources with following appropriate filtering [40]. Similar techniques
have been applied in optical and ultrasonic imaging [154]. According to these
methods, PC noise signals are transmitted and space-time filtering of the received
signals is then applied. The intensity and coherence functions (or other statistical
moments) of the received signals, referred to as CTP, are usually analyzed in these
situations [40, 154].

The possibilities of using PC space-time signals for tomographic reconstruction
of inhomogeneity images in oceanic waveguides are studied in the following sections.
Numerical and experimental examples are provided to add clarity. Ships or specially
designed acoustic radiators can be used as sources of the PC waves in oceanic
waveguides [40]. Investigations of PC space-time structures in the ocean have shown
the conditions for the formation of bundles of partial waves (groups of rays or modes).
If the parameters of partial waves are nearly the same, the bundles are characterized
by relatively high internal coherence [161].

The use of PC-wave bundles for tomographic reconstruction of different types
oceanic inhomogeneities can be proposed. Examples of tomographic reconstruction
for three types of oceanic inhomogeneities will be discussed, namely for: (1) an ocean
front as an example of a large, smooth inhomogeneity, (2) a fish shoals for application
of the differential tomography method [2, 68], and (3) a spatially localized
inhomogeneity, for the shape reconstruction by using the Fresnel diffraction
tomography method [154].

6.2.1 PC Tomographic Monitoring of Oceanic Fronts

According to the well-known method of acoustic tomography of relatively
smooth inhomogeneities, such as eddies and frontal zones flows, one should measure
delays for ray travel times [12, 23]. The ray paths are perturbed due to changes of
spatial distributions of sound speed in the ocean volume. Using an a priori model of
an unperturbed waveguide and ray travel-time measurements, tomographic
reconstruction of the sound speed distribution can be accomplished. To achieve -
relatively good results, highly accurate measurements are required [12]. Fluctuations
in the received signals due to randomly distributed inhomogeneities and
nonstationarities of the ocean environment under natural conditions can prevent one
from achieving accurate reconstruction. Partially coherent signals are often used in
optical and ultrasonic imaging to overcome these difficulties [154]. The
measurements and filtering of space-time parameters (CTP) of PC acoustic noise
signals can form the basis for the application of similar methods to oceanic
waveguides [161]. The aim of such methods is the elimination of interference noise
and diffraction distortions by the reduction of coherence structures of partial waves
in the waveguide through increasing the source size and bandwidth.
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and diffraction distortions by the reduction of coherence structures of partial waves
in the waveguide through increasing the source size and bandwidth.

Let us now discuss the possibility of using this method for tomographic
reconstruction of large and relatively smooth inhomogeneities. Figure 6.5 shows the
SSP for the ocean-front simulation. An acoustic source with a horizontal length of
100 m and bandwidth of 500 Hz is placed near the surface duct axis (type 1 in Fig.
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Figure 6.7. Shows the arrival structures in the temporal-depth domain
for the three cases, corresponding to cases (a), (b), and (c) in Fig. 6.6
for the vertical array located at the horizontal distance of 600 km from
the source. (Adapted from [155].)

6.5). The front is simulated by the SSP transitions from type 1 to type 4 along the 50-
km distance. This ocean front is typical for the northeast region of the Pacific Ocean.

Figure 6.6 shows the modeled propagated-signal level for the specific
placements of the front and propagation out to 600 km. There is no SSP transition in
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Figure 6.8. Simulated inhomogeneity (dashed © Gemfs) s Lt 108
curve) in the surface-duct waveguide with the S IE T Sl

SSP (solid curve). (Adapted from [155).) ] TN
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Fig: 6.6a. For Figs. 6.6b and 6.6c, the transition begins at 350 km and 150 km,
respectively. The measured signal level is a commonly analyzed property of a
waveguide, and it is also the simplest example of CTP. This CTP is the coherence
function for zero spatial and temporal lags. This case has PC space-time features for
a spatially extended, broadband source discussed in Ref. {161].

The structure of propagated-noise signals in the temporal domain depends also
on the location of the front along the acoustic path. Figure 6.7 shows the arrival
structures in the temporal-depth domain for the three cases, corresponding to the three
cases in Fig. 6.6, at the vertical array located at the horizontal distance of 600 km
from the source. It can be seen from these plots that the PC waves having different
numbers of turns reach the region of observation with different angles, arrival times,*
and intervals of depth. These facts provide an opportunity for the space-time filtering
of different types of waves for tomographic reconstruction of inhomogeneities. The
high-speed waves, traveling at large angles, cover a wide depth range. They have
relatively high coherence due to their low spatial-frequency structure. On the
contrary, the relatively slow waves are focused near the waveguide axis. They
propagate with small angles and are effectively averaged (incoherently) due to the use
of broadband sources with a large spatial extent relative to the small scales of the
space-time interference structure.

The comparisons of the dependencies of travel time on depth for different
locations of the ocean front show significant changes in their structure. Such changes
can be used for monitoring of ocean front movements along the acoustic path. A
simple method for this monitoring is the measurements of CTP of the slow PC space-
time signals. The accuracy in estimating frontal location is determined by the
waveguide structure and the space-time coherence characteristics of the noise source.
It should be noted that, in principle, different PC waves cross the front at different
angles. Accordingly, additional information about the frontal structure can be
extracted by analyzing the changes of these parameters.

To solve similar reconstruction problems involving the horizontal structure of
a frontal zone, one should use a moving noise source, such as a ship, and then PC
methods can be applied. Such a scheme can consist of a stationary receiving vertical
array and a noise source moving along a direction parallel to frontal zone. For the
case discussed above, the number of elements of the vertical array may be about
thirty. Such a system of observation can be used for tomographic reconstruction of
the frontal structure in the vertical domain also.
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6.2.2 Partially Coherent Differential Tomography

As has been described above, the idea of differential tomography is based on
the possibility of reconstruction of localized inhomogeneities by analyzing the
differences in ray structures with and without the presence of inhomogeneities [2, 68].
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Figure 6.9. Signal levels in the rarige-depth plane for the (a)

unpertutbed waveguide and for the petturbed case for the fish shoal at

the range of (b) 7 km and(c) 33 km. (Adapted froimi [155].)

According to this method of tomographic reconstruction, the spatial distribution of
inhomogeneities along acoustic paths is determined by scanhing the intensity of the
scattered waves for different fravel tinies and different depths of reception. A similar
principle can be developed for PC waves.
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To demonstrate this possibility, we discuss the scenario where an acoustic
noise source (similar to the previous case) is placed in the surface-duct waveguide
with the SSP shown in Fig. 6.8. The solid curve in Fig. 6.8 is the SSP for the
unperturbed case, and the dashed curve represents a sound speed modification due to
localized inhomogeneities at a given points along the range. We may consider this
inhomogeneity to be a shoal of fish 100 m long and 10 m high. The sound speed
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Figure 6.10. Signal levels at the range of 40 km in the time-depth
plane for the (a) unperturbed waveguide and for the perturbed case for
the fish shoal at the range of (b) 7 km and(c) 33 km. (Adapted from
[155]) ‘

perturbation is presumed to be due to a compact collection of fish swim bladders and
can be described by known simple models [160]. o
Figures 6.9a and 6.10a show the signal levels in the range-depth plane and at
the range of 40 km in the time-depth plane, respectively, for the unperturbed
waveguide. Figures 6.9b,c and 6.10b,c show the equivalent parameters for the
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perturbed case for the fish shoal at the range of 7 km and 33 km, respectively. These
plots show that inhomogeneities can be considered as secondary sources, producing
scattering waves which produce significant changes in the structure of PC waves. In
particular, new waves arise in regions of the time-depth domain that were originally
devoid of energy. The existence of significant energy in these previously non-
insonified regions can form a basis for tomographic reconstruction.

Although actual cases are more complex, we might consider a simple model
to illustrate the principle for the localization of an inhomogeneity. For this purpose,
we assume an idealization of the SSP in Fig. 6.8, for which the upper and lower parts
of the profile have constant values of ¢, and c,, respectively. Then, the signal in the
surface duct channel propagates mostly near the surface until it reaches an
inhomogeneity at an unknown range, x. After that energy starts leaking into the
deeper region, and measurements are made at the deeper depth for some greater range,
a, where we measure a travel time delay, 1, from a signal propagating solely in the
deeper region. Using the equation, t =x/c,+(a-x)/c,, the horizontal location of the
inhomogeneity can be estimated. With sufficient a priori knowledge of the real
waveguide and a sufficiently complex measuring system, one can reconstruct
inhomogeneities in natural waveguides using a similar approach.

6.2.3 Fresnel Diffraction Tomography with Partially Coherent Waves
An application of the diffraction tomography method for the reconstruction of

oceanic inhomogeneities using a long horizontally distributed array has been proposed
in [154, 155]. The basic idea of the method consists of numerical inverse focusing

W
Y (m) N Y (m)

Figure 6.11. CTP maps showing the influence of the multiplicative effect due to large
distances between the receivers: (a) one mode and (b) two modes. (Adapted from [155].)

of measured data into each point of the observation region. To increase the spatial
~ resolution of reconstructed pseudo-images, a multi-view tomographic method was
developed [154]. It is based on the use of the dark-field method to eliminate the
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direct illuminating field. This is equivalent to placing an object at the focal point of
the illuminating plane wave in physical optics. The results of numerical simulation
and ultrasonic model experiments have shown that interference noise and diffraction
distortions of images can be effectively minimized and reliable reconstruction results
can be achieved. The effective way of smoothing out the influence of both these
phenomena is the use of the PC illuminating sources. It is important to note that the
use of such sources allows for the following space-time filtering. The filtering can
be used for isolating waves that interact with the inhomogeneities from the
background of interference and additive ocean noise [154].

The analysis of contrast CTP (i.e., CTP improved by the method described
above) associated with the use of various horizontal arrays and bandwidths of PC
sources has shown the existence of the optimal illuminating field space-time
coherence that allows the effective elimination of interference noise and diffractive
distortion. The results of numerical modeling of tomographic image reconstruction
based on the PC illumination are presented in Fig. 6.11. These images were
computed for the following scenario. An object of complex form, representing the
Greek letter pi of the sizes of 40 by 40 m, was placed at the bottom of homogeneous
isovelocity waveguide of the depth of 50 m. It was illuminated by a quasi-harmonic
acoustic-noise source having a central frequency of 360 Hz and the horizontal size of
100 m. A horizontal receiving array 7.5 km long and consisting of 32 receivers was
placed near the bottom. It was located at a distance of 7.5 km from the center of
rotation between the source and receiving atrays about the observation region, which
was 0.5 by 0.5 km. Thirty-two partial images of the observation region were
obtained. Then they were incoherently summed, after the dark-field method was
applied for the elimination of the direct-field background. Figure 6.11 shows the
influence of the multiplicative effect due to the large distances between the receivers.
The relatively small level of interference background was achieved due to the PC
illuminating waves. The influence of multi-mode propagation leads to distortion of
images that can be reduced by further decreasing the coherence of the insonifying
waves [154].

6.3 SPATIAL FILTERING OF PARTIALLY COHERENT ACOUSTIC
IMAGES '

As noted in the previous sections in different practical applications of the
acoustic tomographic systers, the illumination fields can be partially coherent. It is
interesting to investigate in more details the problems related to the use of partially
coherent fields in Fresnel diffraction tomography. This issue is closely associated
with the ideas and methods that were developed in optics and ultrasound imaging
systems [82]. The results of many research wotks have illustrated the followirig: On
one hand, random inhomogeneities of the meditit and motion of the elements of the
vision system destroy of the soutid coherence. On the other hand, special meth&ds
have been developed for the recotistruction of imaged objects using noncohererit
illumination to suppress speckle-ioise in images [123]. In any case we should
investigate the scafteting of partially coherent sound by objects to understarid the
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details of partially coherent imaging. A technique of acoustic image reconstruction
in natural media can also be build on this basis. Theoretical estimation and
experimental data have shown [123, 154, 155] that tl. > effectiveness of the spatial
filtering of the images diminishes for incoherent illumination systems. It is
interesting to investigate, for example, the cases of the ocean tomographic
reconstruction when the observed inhomogeneities are smooth and forward-scattering.
The application of PC sound for the construction of the acoustic images provides the
possibilities of decreasing the coherent noise and spatial filtering of images.

6.3.1 Diffraction of PC Fields in Layered Waveguides

In this section we investigate the problem of spatial filtering of partially
coherent acoustic images by using a horizontal array in layered waveguides. The
theoretical analysis of low-frequency acoustic images is accompanied by laboratory
experiments.

Partially Coherent Fields. For simplicity, we assume that the field of the source §
illuminates a large (in wavelength scales) absolutely ridged scatterer ¢ (see Fig. 6.12).
The diffracted fields in the far zone of the scatterer can be represented by using of the
Green’s function of the unperturbed waveguide,

N . .
| Glrymnnd)= X 0,00, explitk, 7l -l r, )™ (6.15)

n=1

where R =(r,z) = (x,y,2) defines the receiving point, ¢, and «, are the eigenfunctions and
‘horizontal moda! wavenumbers, respectively, and N is the entire number of the

Figure 6.12. Geometry the study of the PC field diffracted into the
far zone by a ndged scatterer. (Adapted from [28].) .

propagating waveguide modes. Let us assume that the conditions of the small-angle
approximation are satisfied. In this case, the diffracted field from the Green’s
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theorem using the Kirchhoff approximation can be deduced. For the potential of
displacement velocity of the scattered field, ¥ =¥-y,, we have:

N

M
= Y ¢,()expli(k,s "%)](K,.S’)‘“2 b3 tpm(zx)eXp[i(Kmr’-%)](Kmr NS, (6.16)
n=1 m=1 .

where y_ is the potential of illumination field, s’ =g V2, r'=((a-x)*+y?)" (see Fig.
6.12), x; is the displacement of the scatterer, a is the distance between the source and

the observation region, and A/ is the number of the diffracted waveguide modes. The
scattering matrix of the waveguide modes, S, , is determined by the form of the

scatterer, o, and waveguide characteristics:

s, Kn?
Sun = TanLm = %, [TQ0,E42) 0,Cr2) & [Lome 7
¢ n

a L (6.17)

where the form of the shadow-generated line, o(¢,n), can be approximately represented
as a preduct of two functions: o({n)~ Q) L().

As follows from Eqs. (6.16) and (6.17), the short-wave diffraction in
waveguides contains a transformation of the waveguide modes in vertical direction
(described by the matrix elements 7, ) and in horizontal plane (described by matrix

nm

L,.)- The resulting field is constructed as a sum of all diffracted waveguide modes,
each of which is formed by the transformation of all illuminating modes [28].

Diffraction of PC Fields in Waveguides. Let us assume that a quasi-monochromatic
illumiration source S, is described by a correlation function Ky:

Ky = Ko(RgpRo0,00) = (Rg,.0)p (R d,)) =
' (6.18)
= AozAz%a(:ox)Arze(’el) 8(zg1 ~2e)0(|rg; ~resl)e _‘Z%t’

where 4, is a constant, 4, is the source spatial distribution function, § is the Dirac

delta function, and 1 is temporal delay. The PC diffracted field in the waveguides can
be represented as a sum of the diffracted structures for all elementary pomt-sources
weighted by the correlation function (6.18). Using Eqs. (6.16) to (6.18), we can arrive
at the formula for the spatial coherence function:

K§ = E 0GP )b ERE",

where 5% are the coefficients of the modes. Then
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XfArz(re)an vp[‘C X, |rG-r1 | |r®—r2|]—%e i[“,,,l’e"d‘K,,l"e"z”dre'

This expression connects the spatial coherence function of the diffracted field with
the form and displacement of the scatterer. Contrary to the formula for the infinite
medium, Eq. (6.19) describes the effects of the interference of the waveguide modes
(nmyv,p-indexes). It can be shown that multimode propagation complicates the
diffraction patterns when scatterer sizes and spatlal delays considerably exceed the
scales of the mode interference.

If 4,4 « A,, where A_is a scale of the variability of the waveguide field for

vertical direction, and if n?/x; « 1, y*x,; « 1, we have from Eq. (6.19):

K= X L@, (4, sinc(pk, +qy,K,Ing)sine (o, +qy,x, ) dv, » (6.20)
nmvit
Yo

where p:(yei-y/)/x}:, q=1/(a-x,;), and

\uz

L:r:: _A()zq)n(z@)(‘p\:(:G))(Pm(:)(P:(: KnKv nmn()

D, = rgla-xphe &, K, 1P explitrg(, -K,) Ha-xp(K,, Kk, )]»

sinc(x)=sinx/x, and n, is the scatterer size in the horizontal direction. Equation (6.20)
shows that the spatial coherence of the diffracted field in a waveguide can be
presented as a convolution of the function Ayze , Which describes a source, and the

Fourier transformation of the horizontal distribution of the scatterer secondary
sources. Figure 6.13a shows the structure of the integral over y, in Eq. (6.20), when

y=v’,n=v,m=p. The solid line corresponds to the function Ayz8 , and the dash line is a
function sinc*([p+gyn,,), determined by the width of the source function A andits
displacement y/x,, where x, =x(a-x))/a. The distribution of intensity in the

observation plane is determined by a common region of these functions, and it is
averaged for an increase of the source size (see Fig. 6.13b).

Spatial Filtering of Diffracted PC Fields. Let us discuss the performance of an array

'horizontally distributed along the y-axis for constructing the images of the scatterer

in waveguides. The aperture function of the array is determined by the expression:
MGy)=M () M’ (@) expli(x,, ysine-x, y2/p)], where M, (v) and M,(z) describe the
array construction, and a and p determine the wavefront slope angle and the focus
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distance of array, respectively. In this case, the image constructed by the array can
be presented as a convolution of the diffracted field (Eq. (6.20)) and the aperture

(@) 1/14

sincz([p+qy]n k 4+
d

Figure 6.13. (a) ComparesAyze with
sinc}([p +qyIn,k,) and (b) the distribution of

intensity in the observation plane determined by
its average for an increase of the source size
(Adapted from [154].)

function M (z,y) [76]. For simplification let us assume that the mode selection (for

example, by the array focusing angle or by the arrival time of the propagating gated
pulse) has been fulfilled. Thus, we have for the image constructed by the array:

(P ap) = (4,57,
_ (6.21)
x| [LaD [exp(-ilp+qyl,n ek, [L-1-K,y0) M, ) dvan|* dv ,
n D )

where 872, =421C 4L 9L (o) K xg(a-x,) (d/H)?, and H is the depth of the waveguide.

The procedure for the image reconstruction can be accomplished by focusing into all
points of the observation region and summing the signals from all array sensors. The
performance of this imaging system is characterized by the contrast transfer function
(CTF) K(a,p,u), where u is a spatial frequency for y direction. To obtain the function
K, we substitute the observed object model in the form L(n) =exp(inu)+exp(-inu) in Eq.
(6.21). In this case we arrive at the following expression for the CTF:

K(o,p,u) = f Ayze Mm[l(‘uKm—u)]M,;[[(pKn,+u)] exp(ifex,/22¢ p+2ox, Ju)dy, ,  (6.22)
Yo

where I=(a-x;)/x,, and e=1/(2(a-x5))-1/p is a focusing parameter of imaging system.
The deduced expression for the CTF describes the image reconstruction in the

waveguide (for the single-mode approximation) for the partially’ coherent
illumination. For the asymptotical cases, when & «//D and Eni/a_, (A, is the
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distance between sensors), Eq. (6.22) describes the asymptotical cases of coherent and
noncoherent imaging systems, well-known in optics [123].

Figure 6.14a shows the results of the calculation of the CTF structure
transformation for different spatial frequencies and for different source sizes, when
the low-frequency filter (dark-field filtration) is used. The calculation has shown,
- that, when &, < D, one can effectively elimninate the direct illumination background

that is important for the reconstruction of the weak oceanic inhomogeneities. The
tesults of the background elimination for the computer simulated images are presented
in Fig. 6.14b.

7
-} max v ¥ max

Figure 6.14. (a) The results of the calculation of the CTF structure transformation for
different spatial frequencies and for different source sizes and (b} the results of the
background elimination for the computer simulated images. (Adapted from [3].)

6.3.2 Some Experimental Results

For the justification of the theoretical results, experiments in the high-

frequency region (about 140 kHz) and in the optical region (as the simple model from
the point of view of the modeling of the partially coherent illumination) have been
carried out. '
High-Frequency Imaging. A receiving array with a synthetic aperture of 28 cm,
formed by the motion of the point receiver, was used for the imaging of the scatterer
spatial distribution (see Fig. 6.15a) in the tank experiment. The quasi-monochromatic
pulse with the time-duration of 300 us was used with the reverberation reduction by
time-gating. The isovelocity water layer of the depth of 3 cm was used as a simple
model of the layered oceanic waveguide. The distance between the source and
observation region was 44.6 cm.

A vertical steel cylinder of the diameter of 0.25 cm was situated at the mid-
point between source and receiving array. Figures 6.15b,c show the image
reconstruction based on Eq. (6.21) for the case of coherent source. Figure 6.15b
presents the image without spatial filtration. We can only see the image ofthe source’
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Figure 6.15. (a) A schematic of the tank experiment, and the image reconstruction based on
Eq. (6.21) for the case of coherent source (b) without spatial filtration and (¢) with low-

spatial-fregnency-filtration. (Adapted from [3].)

distorted by waveguide mode interference (see vertical black and white lines). The
results of the low-spatial-frequency-filtration (dark-field method) are shown in Fig.
6.15¢, where the disposition of the cylinder is well determined. It should be noted
that the spatial filter has taken the waveguide modal interference into account.

Optical Modeling. For the comparisbn of the theoretical results of the spatial

(@)

g

(k)

|~

\

Figure 6.16. Schematic of systems for PC image reconstruction in
optical fields for (a) spatially incoherent and (b) spatially coherent,
(Adapted from [82].)

filtration of the PC images with experimental data for the optical case, the special
laboratory facilities were built. These facilities have allowed for constructing PC
images in optical fields [82]. An important aspect of the experimental systems is a

light source that can be switched from spatially incoherent to coherent (element 1 in
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Figs. 6.16a and 6.16b, respectively). The use of these facilities provides an
opportunity for high-frequency imaging-system modeling. But this approach can not
be used for the analysis of imaging systems for the case of multi-mode propagation.
The block scheme of the experiment mounting includes optical lenses (elemert 2 in
Fig. 6.16) that is an analogy of the array of acoustic sources with variable coherence.

Figure 6.17a shows the results of the CTF measurement for ditferent sizes of
the source. This allows us to estimate the efficiency of partially coherent image
filtration. An example of the filtration is shown in Figs. 6.17b and 6.17c, where
images of letters after low-frequency filtration are presented for different source sizes.

6.4 REMOTE SENSING OF MARINE SEDIMENTS BY ACOUSTIC
NOISE ON SITE OF THE DEEP SEA DRILLING HOLE N643
IN THE NORWEGIAN SEA

As shown theoretically and empirically, noise or partially coherent acoustic
sources can be used for the remote sensing of bottom structure. In general, bottom-
structure reconstruction can also be viewed as a tomographic procedure, because the
bottom-layer structure can be reconstructed as tomographic projections by monitoring

Figure 6.17. (a) The results of the CTF measurement for different

sizes of the source and the resulting image reconstructions for the
source sizes (b) -- and {c) --. {Adapted from [82].)

in the spatial domain. Although not yet fully developed, prospects for the future are
very promising. We explore these ideas in the current section and briefly discuss the
results from the point of view of the investigations associated with the use of noise
partially coherent acoustic sources for remote sensing of the bottom structure in the
ocean. ‘
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For the bottom monitoring one needs to have the high-resolution seismic
surveys providing the information about the acoustic parameters of marine sediments.
In principle. these parameters can be obtain from in-situ measurements in drilling
holes or wide-aperture seismic reflection data. However, this approach is ineffective
" for deep-sea regions, because cf measurement difficulties and high costs. To
overcome this problem, we proposed more efficient and cheaper method for the
estimation of sound speed profile, attenuation and the reflection coefficients in
sediment layers [162].

~ Our approach consists of remote sensing of sediment layers of the seafloor in
the following manner. Continuous low-frequency acoustic noise is emitted from sea
surface by a moving ship. The sound source may represent the ship own noise or a
more powerful source. But the use of a ship's own noise can provide satisfactory
results. The receiver is a vertical array mount at an Automatic Bottom Station (ABS).
ABS is a pressure resistant container with a recorder and microcomputer. Unlike the
traditional seismic method where travel times are determined, we have suggested the
measurements of delay times between direct and bottom-layers-reflected-signals
arrivals. Delay times can be determined frem the locations of autocorrelation maxima
of received signal. Using data {rom the array, we can determine the direction to the
souirce and obtain basic dependence of delay times on arrival angles. Then we can
solve the inverse problem to obtain sediment geoacoustic model. SSP in sediment
lavers is defined as a model calculated from the ray theory.

The data needed to justify the robustness of our method of the bottom sensing
can be viewed as exira information that might be obtained during any experiments
where ABS is used (presuming that the source is, at least, ship noise). For this reason
we already have a great volume of experimental data obtained in different regions of
the oceanic where an ABS has been used. But it was only in 1990 that this method

Figure 6.18. Reconstructed SSP using ship noise
data {solid line) compared with a laboratory
determination of the speeds of the samples froni

“the drilling hole (dashed line). (Adapicd from
[1621)

was checked directly when two ABSs were launched to the bottom at the depth of
2780 m directly on site of a deep-sea drilling hole N643 (ODP LEG 104) in the
Norwegian Sea close to the Voring Plateau.

The bottom SSP was reconstructed by the processing of data of ship noise
produced by the moving vessels, Akademik {offe and Akademik Sergey Vavilov, near
the site of the drilling hole. As shown in Fig. 6.18, the reconstructed SSP (solid line)
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is in a good agreement with laboratory determination of speeds of the samples of the
drilling hole (dashed line) [162].

In this experiment a special source of low-frequency noise from the Akademik
Ioffe was also used. The continuous noise signal was emitted at the depth of 300 m
when the vessel was drifting away from the site of N643 and ABS. The results of the
bottom sensing were not significantly improved when the special source of acoustic
noise was used. ’

" Partially coherent space-time acoustic noise sources used as an insonifying
field form the basis for the discussion of three different types tomographic
reconstruction of the oceanic inhomogeneities. Some simple procedures for the
extraction of the parameters of inhomogeneities, namely, their spatial distributions,
were proposed for: (1) an oceanic front representing a relatively smooth
inhomogeneity, (2) a shoal of fish representing a spatially localized inhomogeneity,
and (3) an object of complex form. It was shown that statistically averaged
characteristics of noise waves can be measured for reconstruction. Partially coherent
space-time structures of partial-wave bundles, which improve the tomographic
reconstruction quality, have arisen for all cases. It is interesting to note that the
bundles of PC waves that preserve high internal coherence are useful for tomographic
monitoring in oceanic waveguides with strong random inhomogeneities as, for
example, shallow-water waveguides with powerful currents.




Chapter 7:
SUMMARY AND CONCLUSIONS

Recent accomplishments in ocean acoustic tomography were discussed in the
previous sections. In particular, topics on the adiabatic approach in tomographic
reconstruction and the methods of Diffraction and Emission Tomography have been
addressed in some details. In this final chapter, the major ideas will be summarized
to indicate concisely the modern status of tomographic investigations, particularly, as
it exists in Russia.

7.1  ACOUSTIC TOMOGRAPHY IN THE OCEAN ENVIRONMENT

It seems that no method for reconstructing the volumetric structure of large
regions of the ocean is more effective than the acoustic remote sensing. It is
important to keep in mind that complex methods of processing large amounts of data
should be employed to produce three-dimensional ocean images. Ocean acoustic
tomography can lead to the solution of this problem.

It is known from our everyday experience that our two eyes create special
images of real world. We might refer to this as binocular vision. For large ocean
regions that are practically non-transparent for the optical vision systems, one can
effectively use acoustic-vision systems. For such acoustic-vision systems, a role
similar to the binocular vision may be played by spatially distributed arrays of
receivers with images of acoustic scatterers or sources created by computer.

The peculiarity of acoustic-vision systems, in contrast to the casc of optical
vision, is the small size of acoustic receiving apertures in comparison with the
acoustic wavelength. Consequently, we frequently observe only pseudo-vision
images from one projection. However, such pseudo-images do provide some
possibilities for making decisions about the presence of objects and for estimating
their locations, sizes, and properties. On the other hand, certain tomographic methods
offer the reconstruction of full three-dimensional distributions of inhomogeneities by
the combined processing of many projections.

Problems in OAT arise because of the inhomogeneity scales and the complex
variability of the ocean medium. These problems lead to a complexity in form, scale,
and distributions of acoustic systems and their resulting tomographic projections, as
well as to the loss of part of the information about observed scatterers due to specific
propagation conditions in ocean waveguides and due to distortions of reconstructed
images given the interference of partial waveguide waves [2, 3, 7, 8, 23, 34, 44, 49,
65,72, 83, 118].
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- 7.1.1 Schemes for Ocean Acoustic Tomography

Ocean acoustic tomography schemes can be separated into three major and
distinct groups, as follows: . .

a) The first group includes transmission schemes for observmg nearly
transparent objects or weakly interacting inhomogeneities. The measured
characteristics of the acoustic waves interacting with such objects are
propagation times and amplitudes and phases of received signals.

b) The second group units diffraction schemes for observing more strongly
interacting inhomogeneities. Here one needs to measure complex
amplitudes of diffracted and scattered waves for large observation regions
over wide interval of arrival angles, as well as signal propagation times.

¢) Finally, the third group includes emission schemes for observing spatial,
temporal and frequency distributions of noise sources in the ocean.

An additional scheme, which might combine some or all of the above schemes, is
based on the use of partially coherent acoustic waves.

Another name associated with the weak interaction case is adiabatic
tomography that can be synonymous with the transmission scheme. It implies that
non-interacting mode-propagation or the ray-acoustic methods can be applied. This
is in contrast with diffraction schemes where modal spectrum transformation takes
place.

This leads us to a final comment about the classification of tomographic
schemes. We may need to distinguish between the application of ray and modal
approaches for the solutions of tomographic problems. Both approaches have their
own distinct realm of optimum application with some overlap. As in other branches .
of ocean acoustics, the ray method works the best at higher frequencies for
environments with less boundary influence (e.g., the deep-water case). Modal
methods are most suitable at lower frequencies in the boundary limited cases.

Adiabatic tomographic methods were developed first. Numerical simulation
and experiments, based on these methods, have been carried out successfully. The
impetus for the fast development of these methods was a need to solve certain large-
scale oceanographic problems and problems related to global climate .changes.
Appropriate algorithms and experimental schemes have been developed sufficiently
to solve these problems on a routine basis.

‘ The situation for diffraction tomography methods is completely different. The

basis of this direction of OAT are methods that were developed in ultrasound and
other branches of acoustics. Pulse gating by vertical and horizontal arrays, the
Doppler technique, and dark-field filtering method are combined in diffraction
tomography, because the signature of diffraction effects is very weak. For these
reasons the evolution of diffraction tomography has been much slower.
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7.1.2 Fundamenta! Problems of Ocean Acoustic Tomography

Mathematically, the problem of tomographic reconstruction can be reduced to
the solution of the Fredholm integral equations of two kinds. Transmission and
diffraction tomography for the reconstruction of spatially distributed inhomogeneities
are related to the Fredholm integral equation of the second kind. Emission
tomography for reconstruction of self-iiluminating objects can be described by the
Fredholm integral equation of the first kind. The problems accompanying the solution
of such equations are well-known in the theory of inverse problems. The three most
_ pervasive issues are:

a) Incorrectness (due to attenuation of the radiated and scattered waves and
the presence of noise);

b) Sub-definiteness (due to difficulties associated with measurements in
natural conditions and necessity of processmg large volumes of
information);

¢) - Nonlinearities (for example due to the multi-scattering effects).

All three issues add mathematical and numerical complexities in the solution
of tomographic problem very often requiring one to establish a unique solution
procedure for every particular tomographic problem. In addition, every natural ocean
waveguide is characterized by the influence of randomly distributed inhomogeneities
and bottom of complex structure (especially, for shallow-water regions of the ocean)
that, on the other hand, can often be a subject for the reconstruction by OAT.

The most important method for overcoming these difficulties is an effective use
of a priori information about observation objects, as well as about the surrounding
medium to optimize the measurement schemes and to choose the optimal basis
functions for the description of the medium and observation objects. It is necessary
to take into account the fact that often all information necessary for the solution of an
inverse problem is not available a priori. This is often the basis for non-stable

‘'solutions, which then requlres approprlate regularlzatlon schemes [1, 3, 5, 6 8,11,
14, 44 83, 118].

7.1.3 Types of Oceamc Inhomogeneltles

A successful solutlon ofa partlcular tomographlc problem is mostly determmed
by an efficient use of available information about the observation object and the
surrounding ocean medium.. From this pdint -of view, it is important to have
theoretical and numerical basis models of oceanic mhomogenemes Spatial and
, temporal scales used for the classification of the oceanic inhomogenéities range over
* very broad limits. - The following simplified classification can be proposed for the
-description of oceanic . inhomogeneities. Accoréling to this scheme, oceanic
1nhomogenemes can be divided into three mam groups:

a) Micr'o-scale_‘inhomogeneities: particles, bubbles, plankton, turbulence, etc.;
b) Meso-scale inhomogeneities: internal waves, hydrolenses, wind waves, fish
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sheals, ice floe, ships, engineering constructlon bottom mhomogenemes
" etc.;
c) Synoptlc and gyro-scales mhomogenertles eddres ‘hydro fronts and season
variabilities. . . .

Measurement schemes and parameters of sensing acoustic signals must be
chosen in accordance with the scales of oceanic inhomogeneities and the peculiarities .
of the acoustic-wave propagation in specific ocean waveguides. For example, one
would use one of the transmission schemes to reconstruct smooth and weak changes
in the distribution of sound speed in the deep ocean, but would use one of diffraction
schemes to determine the location and shape of underwater spatially 1ocalized’ ob)ect
[8,9, 10, 13,23, 28, 33, 46, 55, 156,.157]. ,

. It is interesting to note that randomly drstributed oceanic inhomogeneities can
play a different role depending onf whether the scheme employed is adiabatic or
diffraction. In the first case, they play the role of noise, while in the second case, they
can be obiects for reconstruction.

7.2 METHODS OF CCEAN ACOUSTIC TOMOGRAPHY -

In this section we shall summarize the methods discussed above.

7,2.1 Adiabatic Temography Methods

The idea of reconstruction of weak or gradua. changes in the d1str1butron of
sound speed in the ocean using multlple acoustic sources and receivers surrounding
large ohservation regions and measuring the shifts' of the travel times of acoustic
pulscq propagating along different ray paths was proposed by Munk and Wunsch in
1979. Several experimental tests of the adiabatic methods by Russian and American
groups individually and jointly have been carried out recently Here we recall some
of those discussed in earlier chapters .

a) An experiment with six acoustic soufces (frequencres of 250 Hz and 400
"Hz) and a vertical recelvmg array by . Russian-American-French
* international team;
b) An experiment on propagation of low- frequency waves (about 20 Hz)
- along a 2500-km-long, Arctic-acoustic-path between a Russian ice camp
near Sprtsbergen where an acoustic source was set, and an American ice
camp in Beaufort Sea, where horizontally and Vertrcally distributed
receiving arrays were mounted;
c) An experiment in the Norwegian Sea with a 105-Hz source and a path
length of 105 km, conducted by Russran screntxsts '

In the processing of expernnemal data, the ray approach was applied.

However, the modal approach can be associated with the adiabatic methods as well.
Matched-field processing can be applied as a part of that approach. In adiabatic cases,
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the reconstruction problem can usually be reduced to the solution of a system of
algebraic equaiions by using appropriate discretizations of functions and choosing the
acceptable basis conditions of the uaperturbed ocean fo linearize the problem.

‘New phenomena associated with the forriaticn of coherent bundles of acoustic
waves in ocean cari also be utilized by OAT. The existence of such structures in the
real ocean has been predicted theoretically and have been tentatively confirmed by
experiments. The propertics of' wave bundles, including their coherence, have been
investigated, and ideas of their application to QAT have been discussed in the
literature on QAT {2, 11, 12, 23, 36, 44, 45, 56,57, 59, 63, 111,113, 114, 115].

7.2.2 -Diffraction Tomography Mcthods

.Diffraction can play an important role, if the wavelength of sensing waves is
of the sizes of observed inhomogeneities and the inhomogeneity boundaries are sharp
‘enough. Diffraction of acoustic waves in the ocean manifests itself a3 horizontal
diffraction patterns (siinilar to free .,pace) for each waveguide mode and as a
transformation of the modal spectrum in the vertical plane.

In this case, the use of pulse signals, vertical arrays, and frequency filtering
allows one to separate different wavegnide modes. Using horizoutally distributed or
_synthetic aperture antennas, for example, horizountally dislributed inhomogeneities can
be reconstructed by inverse focusing of the measurement data in the regions off
interest. - When the integral equation aliows linearization, the Born and Kirchhoff
approximations can oifer simple and effective methods for diffraction tomography
problem Also, as in ultrasonic acoustics. analytical inversion can be used when the
appropriate conditions for the application of the Fourier and Fresnel transforms are
satisfied.

Generaily, such tomographic reconstruction procedures can be described as
follows: The initial step of reconstruction is the collection of a priori information
about the environment (ocean waveguide) and the objects to be observed. Using this
information, basis functions can be chosen as the second step to calculate the
spectrum of measured and filtered data in the space of the appropriate basis functions.
At the third step, the inhomogeneity images can be numerically produced. Finally,
decisions about the presence of objects, their parameters, and variability car. be made.
Information on basis functions, measuring'scheme and some threshold values are
combined to make a decision in tomographic vision [2 3,18, 19, 26,27, 28, 30, 32,
34, 35, 46, 48, 49, 68, 79, 80, 83]. :

It may be readi ly shown that a full reconstrucfxor of the vertlcal structure of
mhomogenemes in the ocean is impossible, because of a limited number of
waveguide propagating modes. Additionally, the multiplicity of acoustic images is

a practical problem in diffractiont tomography, which can be easily demonstrated by
the modal decomposition of the Green’s function and the incident ﬁeld in the Born
approach.

. This approach also allows obtammg the limitations-on the sizes of objects and
arrays for investigation of the situations when multi-mode propagation destroys the

“final image. The Fresnel Tomography algorithm, including the focusing of scattered
waves into each point of the observation region and filtering by the Dark-Field
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Method to reduce the direct illumination can be used for the reconstruction of the

_ distribution of scatterers in horizontal plane. As calculations have shown, multi-mode
interference leads to image distortion, especially for the cases when only a few modes

propagate. - ‘

Differential Tomography. The peculiarities of propagation and diffraction of
acoustic waves in ocean waveguides allows for possibilities of constructing different
{omographic vision systems for the remote sensing of oceanic inhcmogeneities. The
differential method is one of them. Tt uses vertical radiating and receiving arrays and
time gating of illuminating acoustic pulses. If the mode with number, n, is radiated
and the mode with number. m, is received, we can isolate the signals scattered by the
inhomogeneities that are situated within the vertical layer with definite width that is
located at the f{ixed distance from the receiving system. Accordingly, we can
reconstruct the distribution of inhomogeneities that are situated along the path
between the source and receiving system by gating the intensity of scattered pulses
in the temporal domain. In order to separate signals from different types of oceanic -
inhomogeneities (suck as wind waves, swell, turbuience, internal waves and others)
and to estimate their parameters, differences in the spatial spectra can be used. Such
spectral difterences arise due to the nature of these inhomogeneities manifested in the
frequency domain. According to this method, the tomographic reconstruction of
randomly distributed inhomogeneities requires the joint processing of sets of
projections in the spatial, temporal, and frequency domains to separate different types
of inhomogeneities and to obtain their spatiat distributions. It may be noted that the
differential method can be devcloped for the ray approach as well [2, 18, 30, 35, 46,
48,49, 50, 68, 69, 72, 73]. ‘ '

‘Fresnel Tomography. Acoustic vision systems using horizontally distributed
or synthetic aperture arrays provide an opportunity to develop a tomographic method
of reconstructing imagés similar to optical vision systems (e.g.; lenses). Algorithms
for such methods are based on analytical inversions of the integral equation in the
Born or Kirchhoff approaches and on the presentation of the image as the spectrum
of the received signals in Fresnel basis-function decomposition. This tomographic
algorithm eonsists of the processing of array data to single out the scattered signals
from the area of interest and the reduction of the direct illuminating signal that
fluctuates due to randem inhomogeneities and nonstationarities of the ocean medium.
To suppress the strongly fluctuating background, the Dark Field Method can be used.
It consists of filtering the low-frequency region of the spatial spectrum. The scheme,
using one horizontally distributed array of a length acceptable to satisfy the Fresnel
approach, produces a pseudo-image (single-view projections). Such a vision scheme
cannot produce good spatial resolution, especially along the axis connected the source
and receiving arrays. To improve the spatial resolution, a set of projections (pseudo-
images) can be used for the reconstruction of two-dimensional tomographic images
{28, 29, 34, 75-79, 132). ' ' :
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7.2.3 Emissior Tomography Methods

In emission tomography an observation object is self-illuminating, so this type
of OAT can be considered to be passive. For this method, which requires the
reconstruction of the spatial, temporal, and frequency distributions of the sources, the
problein consists of overcoming the incorrectness due to the influence of non-
propagating waves in the ocean waveguide [23, 34, 39, 44, 45, 49, 57-39, 62, 88,
154].

7.3 PARTIALLY COHERENT IMAGING IN THE OCEAN

As experiments and theoretical investigations kave shown, interference noise,
arising due to randomly distributed irhomogeneities and multi-ray and multi-mode
propagation in the ocean, can destroy the results of the tomographic reconstruction.
Partially Coherent (PC) illumination can be used to reduce the interference noise
influence in a waveguide.

The use of PC waves for tomographic reconstructior: in the ocean is based on
the peculiarities of forming partially coherent waves structures and interacting PC
waves with oceanic inhomogeneitics. As préliminary analysis has shown, weakly
divergent bundles (WDBs) of partial waves with similar param\eters exist for the.
various different types of oceanic waveguides. These bundles are characterized by a
high degree coherence that diminishes relatively slowly despite the influence of
randomly distributed oceanic inhomogeneities. Thus, WDBs can be used for
tomographic reconstruction in the regions of the ccean where strong random
inhomogeneities, (e.g., intense ocean currents) are present. Somie tomographic

" schemes, with PC illumination, have been discussed for the reconstruction of large,
smooth oceanic inhomogeneities, such as ocean fronts, and of spatially localized
inhomogeneities, such as fish shoals.

’ Another approach. closely connected with previous case, is the investigation
of the use of PC waves for diffraction or Fresnel tomography schemes. The
tomographic image in this case can be described by coherence functions. To analyze
the structure of the pseudo-image, the Transferal Contrast Function can be used. It
determines the spatial resolution and characterizes the spatial filtering of the images,
for example, for decreasing the direct-illuminating field. .

As can be shown, the Transferal Contrast Function is connecled with the
coherence function of the itluminating field, which is determined by the sizes and
frequency bands of the noise-acoustic source and the parameters of waveguide modes
{39, 40, 80, 81, 82, 87, 136, 138, 154, 155, 161]. ' ‘

7.4 EQUIPMENT FOR OAT EXPERIMENTS

The major pért of our discussion on OAT was related to the methods of OAT
and the results of computer simulations. But the experimental testing in this field is
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a very important issue. In great brevity, the major elements of experimental schemes
are introduced in this book only to outline the problem.

In OAT there are many practical problems associated with the development of
the principles of designing and manufacturing of the elements of measuring .
tomographic schemes. The design of low-frequency sources with a high level of
* radiated acoustic energy and long linear arrays with position, navigation, and
synchronization control are among the problems. We have discussed some examples
of low-frequency experimental facilities, which were manufactured in the Institute of
Applied Physics (IAP) of Russian Academy of Sciences {17]. A low-frequency
electromagnetic monopole sources radiation system was built and tested successfully
in Arctic experiments. The system includes a large source operating between
approximately 50 and 90 Hz and a smaller one operating around 200 Hz. The sources
level of these projectors is in excess of 200 dB ref. 1 uPa. IAP also produced a low-
frequency mobile linear antenna for mounting either vertically or horizontally.
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